
i
i

i
i

i
i

i
i

Section 13.6

Environment

Mapping

13.6 Environment Mapping

The goal of environment mapping is to simulate an object reflecting its
surrounding, e.g., a shiny kettle reflecting the kitchen or a well-polished car
reflecting the street. As the environment can be seen by reflection off the
object, it is said to be mapped onto the object. An approach to environment
mapping originally invented by Blinn and Newell [19] in the seventies is still
popular today because of its ease of implementation.

The Blinn-Newell method makes clever use of textures, but the basic
idea is not hard. An image of the environment (presumed static) is captured
in a texture or multiple textures. Subsequently, the particular texture and
texture coordinates used to paint a point on the environment-mapped object
are determined from the position of the viewer relative to the object.

V

A´

B´

normal

environment texture

A

B

Figure 13.14: Blinn-Newell environment mapping principle: texture coordinates for a
vertex V on an environment-mapped surface are obtained from the point on the texture
image struck by the reflected ray originating from the eye.

Figure 13.14 illustrates the principle. The texture coordinates at the
vertex V of an environment-mapped quad are determined by the point of the
environment – more precisely, the corresponding point of the environment
texture – seen by the viewer by reflection off the object. For example, when
the viewer is at A, V is painted with the color values at B (red in the
figure); when she moves to A′, those of B′ are used (green). The crux of the
Blinn-Newell approach then is to dynamically compute texture coordinates,
based on the laws of reflection, as the viewpoint changes.

OpenGL provides support for two methods of environment mapping:
sphere mapping and cube mapping. Both are based on the Blinn-Newell
approach, the difference being in the way that the environment is captured
on texture and that texture coordinates are computed. OpenGL provides
automatic texture coordinate generation for either method. We’ll discuss
sphere mapping in fair detail.

We’ll, however, split our presentation into implementation and theory,
as the former is straightforward and what the practitioner needs most to
grasp, while the latter is rather more theoretical and demanding. 529

Sam
Text Box
Extract from Computer Graphics through OpenGL: From Theory to Experiments by Sumanta Guha, Second Edition

i
i

i
i

i
i

i
i

Chapter 13

Special Visual

Techniques

13.6.1 Sphere Mapping

Getting It to Work

Implementing sphere mapping using OpenGL is simple, as the following
program shows.

Figure 13.15: Screenshot
of sphereMapping.cpp.

Experiment 13.12. Run sphereMapping.cpp, which shows the scene of
a shuttle launch with a reflective rocket cone initially stationary in the sky in
front of the rocket. Press the up and down arrow keys to move the cone. As
the cone flies down, the reflection on its surface of the launch image changes.
Figure 13.15 is a screenshot as it’s about to crash to the ground. End

The two commands

glTexGeni(GL S, GL TEXTURE GEN MODE, GL SPHERE MAP);

glTexGeni(GL T, GL TEXTURE GEN MODE, GL SPHERE MAP);

in the initialization routine of sphereMapping.cpp ask OpenGL to use
functions from its library to generate the s and t texture coordinates for
sphere mapping.

The pair of commands

glEnable(GL TEXTURE GEN S);

glEnable(GL TEXTURE GEN T);

and its inverse

glDisable(GL TEXTURE GEN S);

glDisable(GL TEXTURE GEN T);

in the drawing routine, bracketing the drawing of the cone, enable and disable
the use of these functions. That’s pretty much all there is to implementing
a sphere map using OpenGL! Note that at the time sphere mapping is
activated the currently bound texture is the launch image, which, of course,
is why it is reflected in the cone.

Now, a reader watching the cone as it zooms down may be wondering
how authentic actually is the reflection. Good question, and it leads us to
investigate how OpenGL computes sphere-mapped texture coordinates.

How It Works

This part is fairly mathematical. If your interest is practical and limited to
using the technique, you can safely skip it and jump to the part on preparing
the environment texture.

u = v/|v|
n

V
v−u r

O

Figure 13.16: The
vectors involved in
generating texture
coordinates.

Here’s how sphere-mapped texture coordinates are generated at a vertex
V . See Figure 13.16. The unit vector u from the eye (the origin O in
OpenGL) toward V is v/|v|, where v is the position vector of V , assuming,
of course, that v 6= 0. The unit eye direction vector from V then is −u. The
unit normal n at V is user-provided.530

i
i

i
i

i
i

i
i

Section 13.6

Environment

Mapping

OpenGL computes the reflection vector r, the unit vector in the direction
that a hypothetical ray from the eye is reflected at V , with the help of the
following equation (obtained by replacing light direction vector l with eye
direction vector −u in the formula of Exercise 11.4):

r = u− 2(n · u)n

Suppose, then, OpenGL finds that r = (rx, ry, rz). Computed next is the
quantity

m = 2
√
r2x + r2y + (rz + 1)2

Finally, the texture coordinates at V are calculated as

s =
rx
m

+
1

2
and t =

ry
m

+
1

2

Whew!
If we parse the expressions for s and t carefully, though, it’ll not be hard

to understand the game plan. Using the expression for m above, write

s =
1

2

rx√
r2x + r2y + (rz + 1)2

+
1

2
and t =

1

2

ry√
r2x + r2y + (rz + 1)2

+
1

2

or

s =
1

2
Rx +

1

2
and t =

1

2
Ry +

1

2
(13.5)

where the variables

Rx =
rx√

r2x + r2y + (rz + 1)2
and Ry =

ry√
r2x + r2y + (rz + 1)2

(13.6)

Once we understand what the mapping

(rx, ry, rz) 7→ (Rx, Ry)

does geometrically the rest will be straightforward.
The reflection vector r = (rx, ry, rz) is the position vector of some point,

say P , on the unit sphere S centered at the origin. See Figure 13.17(a).
Now, the position vector of P with respect to the south pole (0, 0,−1) of S
is r′ = (rx, ry, rz + 1). And r′ normalized is the vector

r′′ =
1√

r2x + r2y + (rz + 1)2
(rx, ry, rz+1) =

Rx, Ry, rz + 1√
r2x + r2y + (rz + 1)2


(13.7)

In fact, r′′ itself is the position vector, with respect to the south pole,
of the point Q of intersection of the line from the south pole to P with the 531

i
i

i
i

i
i

i
i

Chapter 13

Special Visual

Techniques

(a) (b) (c)

Q

z

(0, 0, −1)(0, 0, −1)

x

y

z

S

xx

z

Pr
r´

S S

S´S´

r´´south pole:
(0, 0, −1)

r = (rx, ry, rz)
(Rx, 0, 0)

r´ = (rx, ry, rz+1)P

P2

P3 P4

P1

Figure 13.17: Determining Rx from r.

unit sphere S′ centered at the pole. S′ is not drawn in Figure 13.17(a), but
Figure 13.17(b) shows both S and S′ in section along the xz-plane (for this
particular drawing we assume that P lies on this section). Rx being the
x-value of Q by (13.7), the projection of Q on the x-axis in Figure 13.17(b)
is (Rx, 0, 0) (Q’s y-value Ry is 0, of course, as it’s on the xz-plane). Here’s
an exercise to reinforce your understanding of the preceding construction to
find Rx from r.

Exercise 13.16. For each point Pi, 1 ≤ i ≤ 4, in Figure 13.17(c), use a
ruler and pencil to draw the corresponding point (Rx, 0, 0) on the x-axis.

Part answer : Red lines indicate the construction for P1.

The reader may now agree that, at least as P varies over the xz-section
of S, (Rx, 0, 0) varies between (−1, 0, 0) and (1, 0, 0) and, correspondingly,
Rx between −1 and 1. Moreover, the closer P gets to the south pole the
closer is Rx to −1 or 1, depending on which side of the pole P is. However,
P should never be at the south pole, for, otherwise, the construction to
determine Rx breaks down. It follows that Rx itself reaches neither value −1
nor 1. In fact, considering now all of the sphere S, not just its xz-section,
it’s not hard to see that Rx varies over the open interval (−1, 1) as P varies
over S minus its south pole.

The mapping from P to Ry is similar. Therefore, as P moves over S minus
its south pole, (Rx, Ry) moves within the interior of the square [−1, 1]×[−1, 1].
For an even better understanding, let’s determine analytically the dependence
of (Rx, Ry) on P .

Choose a Z in −1 < Z ≤ 1. The plane z = Z intersects S in a latitudinal
circle

x2 + y2 + Z2 = 1 or x2 + y2 = 1− Z2

Now, from (13.6) we have that

R2
x +R2

y =
r2x + r2y

r2x + r2y + (rz + 1)2532

i
i

i
i

i
i

i
i

Section 13.6

Environment

Mapping

Therefore, if P lies on the latitudinal circle x2 + y2 = 1 − Z2, so that
r2x+ r2y = 1−Z2 and rz = Z, then the preceding equation says that (Rx, Ry)
lies on the circle

R2
x +R2

y =
1− Z2

1− Z2 + (1 + Z)2
=

1− Z2

2 + 2Z
(13.8)

Now, we can see how (Rx, Ry) varies with r = (rx, ry, rz) as we had set
out to. In fact, we’ll draw a picture. See the two diagrams on the left of
Figure 13.18.

O

t

(0, 0)

(0, 1) (1, 1)

(1, 0) s

z
(0, 0, 1)

S

(−1, 1) (1, 1)

(−1, −1) (1, −1)

12
3

4
51

2

3

4
5

P (s, t)

texture
space

(1/2, 1/2)

Ry

Rx

(Rx, Ry) (Rx, Ry)

south
pole

north
pole

Figure 13.18: The maps P 7→ (Rx, Ry) and (Rx, Ry) 7→ (s, t).

Keep in mind that r is P ’s position vector, the latter varying over S.
Each latitudinal circle on S (now drawn upright at left with the north pole
at the top to better see these circles) maps to a circle centered at the origin
and in the square [−1, 1]× [−1, 1] in RxRy-space (drawn in the middle). In
particular, the north pole maps to the origin, and latitudinal circles from the
north pole downward map to increasingly larger circles inside [−1, 1]× [−1, 1].
Five pairs of corresponding circles have been drawn and labeled similarly in
the two diagrams. As the latitudinal circles approach the south pole, the
mapped circles draw nearer and nearer to the containing square.

Exercise 13.17. What is the radius of the circle to which the equator
maps? What are the radii of the images of the latitudinal circles 45◦N and
60◦S?
Hint : Equation (13.8) gives the radius of the circle in RxRy-space, which is
the image of the latitudinal circle at z = Z. For example, the latitudinal
circle 45◦N has z-value sin 45◦ = 1/

√
2, so plug Z = 1/

√
2 into (13.8) to

find the radius of its mapped circle in RxRy-space.

Exercise 13.18. How do longitudinal great circles on S map?
Hint : Straight lines through the origin in RxRy-space 533

i
i

i
i

i
i

i
i

Chapter 13

Special Visual

Techniques

The final transformation from RxRy-space to st-space (texture space) is
simple. See the rightmost two diagrams of Figure 13.18. (Rx, Ry) is mapped
to (1

2Rx + 1
2 ,

1
2Ry + 1

2) via Equations (13.5), which linearly transform the
square [−1, 1] × [−1, 1] in RxRy-space to the unit square [0, 1] × [0, 1] in
texture space. The images in texture space of the five circles in RxRy-space
are shown as well in the rightmost diagram.

Bottom Line

P

S

V

Figure 13.19: The
environment S around a
perfect mirror vertex V .

Time for a wrap-up in plain English. If vertex V were on a perfect mirror
and the environment around it arranged along the unit sphere S centered
at V , then the eye would see the point P where S is intersected by the
reflection of the line of sight at V (see Figure 13.19). However, OpenGL’s
only knowledge of the environment is from a user-provided texture occupying
a unit square in texture space. So what it does is this: if the eye wants to
see the point P in the spherical environment, OpenGL shows it instead the
point (s, t) in texture space to which P is mapped as described above by
P 7→ (Rx, Ry) 7→ (s, t).

The calculations above tell exactly what happens in physical terms. If
the eye asks to see the north pole of the environment, then it’s shown instead
the center of the texture. As the eye travels to see points farther and farther
from the north pole, it’s shown points farther and farther from the center of
the texture. Precisely, latitudinal circles in the environment are replaced for
viewing by circles in the texture centered at its middle.

Preparing the Environment Texture

Given this sphere-mapped scheme to present the environment to the viewer
via a texture, what is the right way to prepare the texture? Practically
speaking, how then should one photograph the environment in order to create
the texture image? Comparing the left and right diagrams of Figure 13.18
suggests an answer. The camera should be located at the origin O pointing
up the z-axis toward the north pole and have a very wide-angle lens; in fact,
it would be helpful if the field of view were nearly 360◦! Of course, this is
impossible, but a fairly wide-angle picture taken with a camera located in
the vicinity of the object to be environment mapped, focused up the z-axis
of world space, should be good.

Remark 13.4. Since the texel used depends only on the value of the reflection
vector at a vertex, and not the vertex’s location, reflections in parallel
directions appear the same at all vertices. Practically, this means that the
environment-mapped object should be small compared to its surroundings
for authenticity.

Remark 13.5. Some practitioners advocate the application of filters to the
texture prior to sphere mapping. For example, NeHe [102] suggests using
the spherizing filter (available, e.g., in Adobe’s Photoshop software).534

