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Projective Spaces and

Transformations

take of it, practical or theoretical. The various transformations of real 3-space

we learned to use for the purpose of animation in Chapter 4 and studied
mathematically in Chapter 5 are, in fact, most naturally viewed as transformations
of projective 3-space, following a so-called lifting of the scene from real to projective
space. A consequence is that representing these transformations as projective is more
efficient from a computational point of view, a fact that OpenGL takes constant
advantage of in its design. Capturing the scene after a perspective projection on film
— “shooting” as we imagine the OpenGL point camera to do — involves a projective
transformation as well.

P rojective geometry is at the heart of computer graphics whichever view you

In fact, it’s not an exaggeration to say that projective geometry is the mathematical
foundation of modern-day CG, and that API’s such as OpenGL “live” in projective
3-space. Unfortunately, though, because projective geometry works its magic deep
inside the graphics pipeline, its importance often is not realized.

There are several books out there which discuss projective geometry — Coxeter
[30], Henle [73], Jennings [78], Pedoe [111] and Samuel [124] come to mind — from
mainly a geometer’s point of view, as well as a few, such as Baer [5] and Kadison &
Kromann [79], which take an algebraic standpoint. All these books, however, seem
written primarily for a student of mathematics. There seems none yet dedicated
to answering the computer scientist’s (almost certainly a CG person) question of
projective geometry, “What can you do for me?”

This appendix is a small attempt to fill this gap in the literature and introduce
projective spaces and transformations from a CG point of view.

Projective spaces generalize real space. They are not difficult to understand, but
geometric primitives, such as lines and planes, behave somewhat differently in a
projective space than a real one. By applying a camera-view analogy from the outset,
we try to convey a physical-based intuition for basic concepts, establishing at the same
time connection with CG.

This appendix is long and the mathematics often admittedly abstract, but the
payback for persevering through it comes in the form of a wealth of applications,
including the projection transformation in the graphics pipeline, as well as the rational
Bézier and all-important NURBS primitives, which are all topics of Chapter 20 on
applications of projective spaces.

Logically, this appendix could as well have been a chapter of the book, just prior
to Chapter 20. However, we decided against upsetting the fairly easy gradient of the
book from the first chapter to the last with the insertion of a mathematical “hill”.
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In fact, Chapter 20 on applications has been written so that the reader reluctant to
take on the venture into projective theory can still make her way through it with
minimal loss. This is not in any way to diminish the importance of the material in this
appendix, but merely recognition of the reality that there are numbers of people out
there who would make fine CG professionals, but care little for abstract mathematics.

We begin in Section A.1 by invoking a camera’s point of view to motivate the
definition of the projective plane. The geometry of this plane, including its surprising
point-line duality and coordinatization by means of the homogeneous coordinate
system, is the topic of Sections A.2 and A.3. In Section A.4 we study the structure of
the projective plane and learn that the real plane can be embedded in the projective,
which in turn yields a classification of projective points into regular ones and those at
infinity.

A particularly intuitive kind of projective transformation, the so-called snapshot
transformation, comes next in Section A.5. Section A.6 covers a few applications of
homogeneous polynomial equations, including an algebraic insight into the projective
plane’s point-line duality, and an algebraic method to compute the outcome of a
snapshot transformation. Following a brief discussion of projective spaces of arbitrary
dimension in Section A.7, we move on to projective transformations.

Projective transformations are first defined algebraically in Section A.8 and then
understood geometrically in A.9. In Section A.10 we relate projective, snapshot and
affine transformations, and see that projective transformations are more powerful than
either of the other two. The process of determining the projective transformation
to accomplish some particular mapping — often beyond the reach of an affine
transformation — is the topic of Section A.11.

A.1 DMotivation and Definition of the Projective
Plane

Consider a viewer taking pictures with a point camera with a film in front of it. Light
rays from objects in the scene travel toward the camera and their intersections with
the film render the scene. See Figure A.1. Captured on film is the (perspective)
projection of the objects. In the case of OpenGL, this is precisely the situation when
the user defines a viewing frustum: the point camera is at the apex of the frustum,
while the film lies along its front face.

film !
O (camera)

Figure A.1: Perceiving objects with a point camera and a plane film.

Clearly, points in the scene that lie on the same (straight) line through the camera
cannot be distinguished by the viewer. In fact, all objects, e.g., points and line
segments, lying on one line [ through the camera cannot be distinguished by the



viewer. They all project to and are perceived as a single point on the film. See
Figure A.2(a). Assume for the moment that the film is two-sided and that objects
behind project onto it as well (depicted is one such point). For now, ignore as well
that lines through the camera parallel to the film, e.g., I, do not intersect the latter
at all. This is owing to the alignment of the film, which can always be changed.

real plane

perceived line

film %eal point (behind the film)
2

/ O (camera)

(2) (b)

Figure A.2: Perceiving points, lines and planes by projection.

*O (camera)

So, one can say that the viewer perceives every line through the camera as a point.

What then does he perceive as a line? The likely answer is a plane. Indeed, any plane
through the camera intersects the film in a line, though, again, the film may have to
be re-aligned so as not to be parallel to the plane. See Figure A.2(b).

Lines are points, planes are lines, . ... Let’s take a moment to formalize, as a new
space, the world as it is perceived through a point camera at the origin. Recall that a
radial primitive is one which passes through the origin.

A radial line in 3-space R3 is called a projective point. The set of
all projective points lying on any one radial plane in R3 is called a projective line.
(See Figure A.3.)

The set of all projective points is called 2-dimensional projective space and denoted
P2. P? is also called the projective plane.

We are taking a significant step up in abstraction in leaving R? for P2.
The real plane R? is easy to visualize as, well, a real plane, e.g., a table top or a sheet
of paper. Not so the projective plane. There is no real object to which it corresponds
nicely.

Things such as a line, which is a set of points in one space, being just a point
of another may seem a bit strange as well. It’s mostly a matter of getting used to
it though — like learning a foreign language. As with a new language, some words
translate literally, but some don’t simply because the concept isn’t familiar (what’s
sandstorm in Eskimoan?).

It’s recommended that the reader stick close to the real-based definitions at first.
A thought process like “Hmm, the projective point P belongs to the projective line L.
Well, then, this means that the real line which is P sits inside the real plane which is
L” may seem cumbersome at first, but projective primitives will seem less and less
strange as we go along.

The term “projective” arose because objects on the projective plane are perceived
by projection onto a real one, which for us is the film. Observe that in Figure A.3(b)
we denote by L both a radial plane (a primitive in R?), as well as the projective line
(a primitive in P?) consisting of projective points that lie on that plane. There should
be no cause for ambiguity as it’ll be clear from the context which we mean.

Terminology: We’ll generally use lower case letters to denote primitives in R? and
upper case for those in P2.

Section A.1
MOTIVATION AND
DEFINITION OF THE
PROJECTIVE PLANE

(b)

Figure A.3: (a)
Projective points are
radial lines (b) A
projective line consists of
all projective points on a
radial plane: projective
points P and P’ belong to
the projective line L,
while P” does not.
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Figure A.4: (a) Radial
lines corresponding to
projective points P and
P’ are contained in a
unique radial plane
corresponding to the
projective line L

(b) Radial planes
corresponding to
projective lines L and L'
intersect in a unique
radial line corresponding
to the projective point P.

660

The dimension of P? is two (as indicated by the superscript). This is
because, while points in R? have three “degrees of freedom”, radial lines in R? have
only two. We’ll elaborate on the dimension of the projective plane in Section A.7.

A.2 Geometry on the Projective Plane and
Point-Line Duality

We have, then, on the projective plane P? projective points and projective lines, just
as on the real plane R? we have real points and lines. It’s interesting to compare the
relationship between points and lines in the two spaces.

Recall the following two facts from Euclidean geometry (geometry in real space is
called Euclidean):

(a) There is a unique line containing two distinct points in R2.

(b) Two distinct lines in R? intersect in a unique point, except if they are parallel,
in which case they do not intersect at all.

What is the situation in projective geometry?

Two distinct projective points P and P’ correspond to two distinct radial lines in
R3, and, in fact, there is a unique radial plane L in R? containing the latter two. See
Figure A.4(a).

It follows that:

(A) There is a unique projective line containing two distinct projective points in P2.

How about two distinct projective lines? Observe that the corresponding
two distinct radial planes, say, L and L’ in R3, intersect in a unique radial line
corresponding, in fact, to some projective point P. See Figure A.4(b). We have:

(B) Two distinct projective lines in P? intersect in a unique projective point.

No exceptions! There’s no such thing as parallelism in P?! Any two different lines
always intersect in a point. Two points—one line, two lines—one point, always: P? has
better so-called point-line duality than R?. We’ll have more to say about the point-line
duality of P? as we go along.

FEixercise A.1. Consider three distinct projective lines L, L' and L”. We know
that their pairwise intersections are three projective points, say, P, P’ and P”. Give
examples where (a) all three points are identical and (b) all three are distinct. Can
only two of them be distinct? If all three are distinct can they be collinear, i.e., lie on
one projective line?

A.3 Homogeneous Coordinates

We want to coordinatize P2, if possible, in a manner similar to that of R? by Cartesian
coordinates. This is important for the purpose of geometric calculations. For example,
Cartesian coordinates on the real plane allow us to make a statement such as “The
equation of the line through the [-2 — 5] and [1 1]T is y — 2z + 1 = 0, which is
satisfied as well by [0 — 1]T, so that all three points are collinear.”

So how does one coordinatize P?? As follows:

The homogeneous coordinates of a projective point are the Cartesian
coordinates of any real point on it, other than the origin. (No, homogeneous coordinates
are not unique, a projective point having many different homogeneous coordinates.
This may seem strange at first but read on ....)



Example A.1. The projective point P corresponding to the radial line through Section A.3
13 — Z]T has, as shown in Figure A.5, among others, homogeneous coordinates [oMOGENEOUS
13 —-2]7, 26 —4]T,[-1 —32]7 and [1.7 5.1 — 3.4]T. In fact, any tuple of the CoorDINATES
form [c 3¢ — 2¢]T, where ¢ # 0, can serve as homogeneous coordinates for P. A
Terminology: To avoid clutter in diagrams, we’ll often write homogeneous coordinates
[y 2]T as (2,9, 2).

That a projective point has infinitely many different homogeneous coordinates may
seem odd, but it’s not really a problem because two distinct projective points cannot
share the same homogeneous coordinates. This is because two distinct radial lines
do not share any point other than the origin. In other words, even though projective
points have non-unique homogeneous coordinates, there is no risk of ambiguity. As an
analogy, think of a roomful of people, each having multiple nicknames, but no two
having a nickname in common — there is no danger of confusion then. As a non-zero

Figure A.5: The

tuple [z y 2]T gives homogeneous coordinates of a unique projective point, we'll often  coordinates of any point
refer to the projective point [z y z]T or write, say, the projective point P =[x y z]7.  on P, except the origin,

If you are wondering if P2 can at all be coordinatized in a unique manner, as js ~ can be used as its

R? by Cartesian coordinates, the answer is that there is no “natural” way to do this. four possibilities are
Don’t take our word for it, but give the question a bit of thought and you’ll see the showm.

pitfalls. For example, a likely approach is to choose the coordinates of one real point

from the radial line corresponding to each projective point. But then one has to come

up with a well-defined way of choosing such a point; in other words, an algorithm that,

given input a radial line, uniquely outputs a point from it. Try and devise such an

algorithm! (The point on the line a unit distance from the origin? There are two such!

The one in the positive direction? Be careful now: exactly which direction is this?)

An important difference between the Cartesian and homogeneous
coordinate systems is the lack of an origin in the latter. No matter how one sets up
a Cartesian coordinate system in R3, i.e., no matter how one sets up the coordinate
axes, the origin (0,0,...,0) is always distinguished as a special point. This is not the
case for the homogeneous coordinate system in P2 — no projective point is special. It
is truly homogeneous!

Example A.2. Find homogeneous coordinates of the projective point P of
intersection of the projective lines L and L', corresponding, respectively, to the
radial planes 2x +2y —z=0and x —y + 2 =0.

Answer: Solving the simultaneous equations

2042y — 2z =
r—y+z = 0

one finds that points on their intersecting line are of the form
y= -3z, z=—-4x
Therefore, homogeneous coordinates of P are (arbitrarily choosing z = 1)

1 -3 —47

Exercise A.2. Find homogeneous coordinates of the projective point P of
intersection of the projective lines L and L’ corresponding, respectively, to the radial
planes —x —y+ 2 =0 and 3z + 2y = 0.

Exercise A.3. Find the equation of the radial plane in R? corresponding to the
projective line L which intersects the two projective points P = [1 2 3]7 and P’ =

homogeneous coordinates —

2 —10]7. 661
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A.4 Structure of the Projective Plane

We're going to try and understand the structure of P2 by relating it to that of R2. In
fact, we'll start off by using the homogeneous coordinate system of P2 to embed R?
inside P2.

A.4.1 Embedding the Real Plane in the Projective Plane

Associate a point p = [z y]T of R? with the projective point ¢(p) = [z y 1]7. The
easiest way to picture this association is to first identify R? with the plane z = 1;
particularly, [z y]7 of R? is identified with [z y 1]7 of z = 1. See Figure A.6. Following
this, the association p — ¢(p) is simply each real point with the radial line through it,
in particular, the real point [z y 1]7 (Cartesian coordinates) with the projective point
[z y 1]7 (homogeneous coordinates).

YA z

o(p) /'

p (X, , 1)

z=1(R2)

Figure A.6: Real point p on the plane z = 1 is associated with the projective point ¢(p).
Projective point @, lying on the plane z = 0, is not associated with any real point.

The association p — @(p) is clearly one-to-one as distinct points of z = 1 give rise
to distinct radial lines through them. It’s not onto as points of P? that lie on the plane
z = 0 or, equivalently, are parallel to z = 1, do not intersect z = 1 and, therefore, are
not associated with any point of R? (e.g., @ in the figure). Precisely, points of P? with
homogeneous coordinates of the form [z y 0] are not associated with any point of R

R2, therefore, is embedded by ¢ as the proper subset of P? consisting of radial
lines intersecting z = 1. We're at the point now where we can try to understand how
we ended up trading parallelism in R? for perfect point-line duality in P?2.

A.4.2 A Thought Experiment

Here’s a thought experiment. Two parallel lines [ and I’ lie on R2, aka the plane z = 1
in R3, a distance of d apart. Points p and p’ on [ and I/, respectively, start a distance
d apart and begin to travel at the same speed and in the same direction on their
individual lines. See Figure A.7. Evidently, they remain d apart no matter how far
they go. Well, of course, as [ and I’ are parallel!

Consider next what happens to the projective points ¢(p) and ¢(p’) associated
with p and p’, respectively. See again Figure A.7 to convince yourself that both ¢(p)
and ¢(p’) draw closer and closer to that particular radial line I” on the plane z = 0
which is parallel to [ and I’. As it lies on z = 0, I” corresponds to a projective point
P not associated with any real; in fact, P""’s homogeneous coordinates are of the
form [z y 0]7.

Observe that the projective point ¢(p) itself travels along a projective line L — the
one whose radial plane contains I. We’ll call L the projective line corresponding to [.
Likewise, the projective point ¢(p') travels along the projective line L’ corresponding
to I’. Moreover, L and L’ intersect in P”. See Figure A.8.

Let’s take stock of the situation so far. The parallel lines [ and I’ on the real plane
never meet, but the projective lines I and L’ corresponding to them in P? meet in P”.



Figure A.7: The real points p and p’ travel along parallel lines [ and I’. Associated projective
points ¢(p) and ¢(p’) travel with p and p’.

o(p)

P

Figure A.8: ¢(p) travels along L and ¢(p’) along L’. L and L’ meet at P".

Moreover, every point of L or L', except for P, is associated by ¢ to a point of [ or I,
respectively. We can say then that the projective line L equals its real counterpart [
plus the extra point P”; L', likewise, is its real counterpart I’ plus P”. And, it’s at
this point P”, beyond the reals, that the two projective lines meet, while their real
counterparts never do.

Example A.3. What if both points p and p’, and together with them ¢(p) and
o(p'), travel along their respective lines in directions opposite to those indicated in
Figure A.7? What if only one reversed its direction?

Answer: If both p and p’ reversed directions, then again they would travel forever
exactly d apart. If only one of the two reversed its direction, then, of course, the
distance between them would continuously increase.

However, in either case, ¢(p) and ¢(p’) draw closer, again both to P”. It seems
that, whatever the sense of travel is of ¢(p) and ¢(p’) along their respective projective
lines L and L/, they approach that one point of intersection of these two lines. Two
points traveling in opposite directions along a real line ultimately grow farther and
farther apart. A projective line, on the other hand, apparently behaves more like a
circle.

A.4.3 Regular Points and Points at Infinity

Recall equivalence relations and equivalence classes from undergrad discrete math.

In particular, recall that the lines of R? can be split into equivalence classes by the
equivalence relation of being parallel. Consider any equivalence class 1 of parallel lines

Section A.4
STRUCTURE OF THE
PROJECTIVE PLANE
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Appendix A of R?, the latter being identified with the plane z = 1 in R? as before. There is a
PROJECTIVE SPACES

unique radial line [ on the plane z = 0 parallel to the members of 1. See Figure A.9.
z y
/ 1
——

//

1=p

Figure A.9: The line | (= projective point P) is parallel to lines in 1. P is said to be the point at
infinity along the equivalence class 1 of parallel lines.

Denote the projective point corresponding to [ by P. Projective lines corresponding
to lines in 1 all meet at P, because their radial planes each contain [. The point P,
which is not associated with any real point by ¢ as it lies on z = 0, is called the
point at infinity along 1 or, simply, the point at infinity along any one of the lines in
1. Conversely, any radial line [ on the plane z = 0 is the point at infinity along the
equivalence class of lines in R? parallel to it. In other words, the correspondences

equivalence class of parallel lines in R> < radial line on z = 0

 point at infinity of P?

are both one-to-one. Note that points at infinity of P? are precisely those with
homogeneous coordinates of the form [z y 0]7.

Returning to the thought experiment of Section A.4.2, one can imagine points at
infinity plugging the “holes” along the “border” of R? through which parallel lines
“run off” without meeting, which explains why every pair of lines on the projective
plane meets.

Projective points which are not points at infinity are called regular points. Regular
points have homogeneous coordinates of the form [z y 2|7, where z is not zero.
Moreover, regular points intersect z = 1, so are associated each by ¢~ with a
point of R? (remember ¢ takes a real point of R2, represented by the plane z = 1,
to the projective point whose corresponding radial line passes through that point).
Accordingly, one can write:

P? = R? U {points at infinity} = {regular points} U {points at infinity}

The union of all points at infinity, called the line at infinity, is the projective line
whose radial plane is z = 0. Therefore, one can as well write:

P? = R? Uline at infinity = {regular points} U line at infinity

Our embedding ¢ of R? as a subset of P2 depends on the plane z = 1, particularly
because we identify » = 1 with R? and subsequently associate each point of R? with
the radial line in R? through it. Is there anything special about the plane z = 1? Not
at all. It just seemed convenient. In fact, we could have used any any non-radial plane

p.
Exercise A.4. Why does p have to be non-radial?

Example A.4. Instead of z = 1, identify R? with the plane x = 2 in R. Accordingly,
embed R? into P? by associating [z y]7 with the radial line through [2 x y]7. Which
now are the regular points and which are the points at infinity of P2?



Answer: The regular points of P? are the radial lines in R? which intersect the plane
x = 2. These are precisely the radial lines which do not lie on the plane x = 0. The
points at infinity are the radial lines which do lie on the plane z = 0. Equivalently,
regular points have homogeneous coordinates of the form [z y 2]7, where x # 0, while
points at infinity have homogeneous coordinates of the form [0 y 2]T.

Exercise A.5. Identify R? with the plane  +y + 2 = 1 in R3, embedding it into
P? by associating [z y]7 with the radial line through [z y 1 — 2 — y]T. Which now
are the regular points and which the points at infinity of P2?

It may seem strange at first that the separation of P? into regular points and
points at infinity depends on the particular embedding of R? in P2. However, this
situation becomes clearer after a bit of thought. It’s related, as a matter of fact, to
the discussion at the beginning of the chapter, where we motivated projective spaces
by observing that lines through a point camera are perceived as points on the plane
film. Even though all lines through the camera do not intersect the film, we argued
this to be merely an artifact of the alignment of the film, the latter being changeable.
Therefore, we concluded that all radial lines should be taken as points in projective
space.

We now come full circle back to this initially motivating scenario. Embedding R?
in P? corresponds exactly to choosing an alignment of the film — the film is a copy of
R? and each point on it associated with the light ray (= radial line in R® = point of
P2) through that point to the camera. Light rays toward the camera which intersect
the film are regular points of P? and visible, while those which do not are points at
infinity and invisible. Moreover, the line at infinity corresponds to the plane through
the camera parallel to the film. And, of course, we are at perfect liberty to align
the film, i.e., embed R? in P?, as we like, different choices leading to different sets of
visible and invisible light rays.

A.5 Snapshot Transformations

Here’s another interesting thought experiment.

Example A.5. A point camera is at the origin with two power lines passing over it,
both parallel to the z-axis. One lies along the line y = 2,z = 2 (i.e., the intersection
of the planes y = 2 and z = 2) and the other along the line y = -2,z = 2.

Take “snapshots” of the power lines with the film aligned along (a) the plane z =1
and (b) the plane x = 1. Sketch and compare the two snapshots.

Answer: This is one you might want to try yourself before reading on!

See Figure A.10. Figure A.10(a) shows the snapshot (or, projection) of the power
lines (thin black lines) on the plane z = 1. These projections are the two parallel lines
y=1and y = —1 (green). This is not hard to understand: by simple geometry, the
line y = 2,z = 2 projects toward the origin (the camera) to the line y = 1 on the
plane z = 1; likewise, y = —2,z = 2 projects toy = —1 on z = 1.

Figure A.10(b) shows the snapshot on the plane x = 1. It is the two intersecting
lines z = y and z = —y making an X-shape. This requires explanation. The top of
the X, above its center [L 0 0], is formed from intersections with the film of light rays
through points on the power lines with x-value greater than zero, while the bottom
from rays through points with z-value less than zero. The rays from the points on
either power line with x-value equal to zero do not strike the film.

The point [1 0 0]7 at the center of the X is included in the snapshot, though no
ray from either power line passes through it, because it’s the intersection with the film
of the “limit” of the rays from points on either power line as they run off to infinity.
It’s convenient to imagine the limits of visible rays as being visible as well and we
ask the reader to accept this. In geometric drawing parlance [1 0 0] is the vanishing
point of the power lines — it’s where they seem to meet on the film x = 1.

Section A.5
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Figure A.11: Screenshot
of turnFilm.cpp.
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Figure A.10: Thin black power lines y = +2,z = 2 projected onto the planes (a) z =1 and (b)
x =1 as green lines. Red lines depict light rays. The x-axis corresponds to the projective point P.

Contemplate the situation from the point of view of projective geometry. The
projective lines corresponding to the two power lines meet at the projective point P
corresponding to the x-axis, as the radial planes through the power lines intersect in
the z-axis. Now, P is a point at infinity with respect to the plane z = 1 (because
the x-axis doesn’t intersect this plane), while it’s a regular point with respect to the
plane z = 1 (because the z-axis intersects this plane at [1 0 0]7). In terms of shooting
pictures, then, the camera with its film along z = 1 cannot see where the two power
lines meet, so they appear parallel. However, with its film along x = 1 the camera
sees them meet at [L 0 0]7.

Eixperiment A.1. Run turnFilm. cpp, which animates the setting of the preceding
exercise by means of a viewing transformation. Initially, the film lies along the z =1
plane. Pressing the right arrow key rotates it toward the © = 1 plane, while pressing
the left one reverses the rotation. Figure A.11 is a screenshot midway. You cannot, of
course, see the film, only the view of the lines as captured on it.

The reason that the lower part of the X-shaped image of the power lines cannot be
seen is that OpenGL film doesn’t capture rays hitting it from behind, as the viewing
plane is a clipping plane too. Moreover, if the lines seem to actually meet to make a
V after the film turns a certain finite amount, that’s because they are very long and
your monitor has limited resolution!

This program itself is simple with the one statement of interest being gluLookAt (),
which we ask the reader to examine next. End

Exercise A.6. (Programming) Verify that the gluLookAt() statement of
turnFilm.cpp indeed simulates the film’s rotation as claimed between the z = 1
and x = 1 planes.

Example A.6. Refer to Figure A.10(b). Suppose two power lines actually lie along
the two intersecting lines z = y and z = —y on the plane = 1, which is the snapshot
on the plane x = 1 of the power lines of the preceding example. What would their
snapshot look like on the films z =1 and z = 17

Answer: Exactly as in the preceding Example A.5, as depicted in Figures A.10(a)
and (b)! It’s not possible to distinguish between these two pairs of power lines — the
pair in Example A.5 being “really” parallel and the current one “really” intersecting —
with a point camera at the origin.

A somewhat whimsical take on all this is to imagine a Matrix-like world where
one can never know reality. Perception is limited to whatever is captured on film.
Therefore, one agent’s intersecting power lines are just as real as the other’s parallel
ones!



It’s useful to think of one snapshot of Example A.5 or A.6 as a transformation of
the other. Keep in mind that if a snapshot appears as the two parallel lines y = +1
on the film z =1, then it always appears as the two intersecting lines z = +y on the
film x = 1, regardless of what the “real” objects are.

Convince yourself of this by mentally tilting one of the power lines in Figure A.10(a)
on the radial plane (not drawn) through it, so that its projection on the z = 1 plane
does not change. The power line’s projection on the £ = 1 plane remains unchanged,
as well, because the set of light rays from it through the camera doesn’t change. For
this reason, it makes sense to talk of transforming one snapshot to another, without
any reference to the real scene. We'll informally call such transformations snapshot
transformations.

Snapshot transformations as described are not really transformations
in the mathematical sense, as they don’t map some space to itself but, rather, one
plane (film) to another. A rigorous formulation is possible, though likely not worth
the effort, as we’ll see soon that snapshot transformations are subsumed within the
class of projective transformations, which we’ll be studying in depth. Nevertheless,
the notion of a snapshot transformation is geometrically intuitive and useful.

Here are more for you to ponder.

Eixercise A.7. In each case below you are told what the snapshot looks like on the
film z = 1, aka R?, and asked what is captured on the film z = 1. The z = 1 shots
are drawn in Figure A.12, each labeled the same as the item to which it corresponds.
You don’t have to find equations for your answer for x = 1. Just a sketch or a verbal
description is enough.

Z Z

4 X/ A *Ql/ A E;
() (b) (c)
t A + o4
S Y
.

z=1 —So—>* z=1 —o——>* z=1 —o—>*
(d) (e) ®
Z Z 4 y
z=1_Y = 5 z=1 z=1 —15 > x
(2 (h) (1)

Figure A.12: Transform these snapshots on the plane z = 1 to the plane x = 1. Some points on
the plane z = 1 are shown with their zy coordinates. Labels correspond to items of Exercise A.7.

Section A.5
SNAPSHOT
TRANSFORMATIONS

667



Appendix A
PROJECTIVE SPACES
AND
TRANSFORMATIONS

’ JZZ:)C

x=1

Figure A.13: Answer to
Exercise A.7(h).

668

Answers are in italics. Figure A.13 justifies the answer to (h).

(a) Two lines that intersect at the origin, neither being the y-axis (on R2).
Two parallel lines. Why the caveat? What happens if one is the y-axis?

(b) Two lines that intersect at the point [0 1], neither being the y-axis.
Two parallel lines.

(c) Two lines that intersect at the point [1 — 1]7.
Two intersecting lines.

(d) A triangle in the upper-right quadrant with one vertex at the origin but,
otherwise, not touching the axes.
An infinitely long U-shape with straight sides.

(e) A square in the upper-right quadrant not touching any of the axes.
A quadrilateral with no two parallel sides.

(f) A trapezoid symmetric about the x-axis with vertices at [1 1], [1 —1]T, [2 —2]T
and [2 2]T.
A rectangle.

(g) A unit radius circle centered at [2 0]7.
An ellipse.

(h) A unit radius circle centered at [1 0]T.
A parabola — see Figure A.18.

(i) A unit radius circle centered at the origin.
A hyperbola.

Exercise A.7(f) seems innocuous enough, but it is very important. Its
generalization to 3D will help convert viewing frustums to rectangular boxes in the
graphics pipeline.

Exercise A.8. Refer to the geometric construction of conic sections in Section 10.1.5
as plane sections of a double cone, and show that any non-degenerate conic section
can be snapshot transformed to another such.

Exercise A.9. (Programming) Write code similar to turnFilm.cpp to animate
the snapshot transformation of Exercise A.7(h). Again, you'll see only part of the
parabola because OpenGL cannot see behind its film.

It’s not hard to see that none of the snapshot transformations of Exercise A.7,
except for (c) and (g), can be accomplished using OpenGL modeling transformations.
This is because they are not affine — recall from Section 5.4.5 that OpenGL implements
only affine transformations.

We just said that most of the snapshot transformations of Exercise A.7
are not affine and yet seem to be suggesting with the preceding Exercise A.9 that
they may be implemented by means of an OpenGL viewing transformation. We know,
however, that the latter is equivalent to a sequence of modeling transformations and,
therefore, affine.

The apparent conundrum is not hard to resolve. The result of the viewing
transformation of, e.g., turnFilm. cpp, is indeed a snapshot transformation in terms
of what is seen on the screen. In other words, the transformation from the OpenGL
window prior to applying the viewing transformation to that after is a snapshot
transformation. However, the viewing transformation serves only to change the
scene to one which OpenGL projects onto the window as the new one. A snapshot
transformation, therefore, is more than a viewing transformation — it’s a viewing
transformation plus a projection.



Exercise A.10. By considering how to turn the film, i.e., viewing plane, show that
implementing a snapshot transformation in OpenGL is equivalent to:

(a) setting the centerz, centery, centerz, upz, upy and upz parameters of the viewing
transformation
gluLookAt (0, O, O, centerz, centery, -centerz, upz)

upx, upy,

and

(b) setting the near parameter of the perspective projection call

glFrustum( left, right, bottom, top, mnear, far)

where the other five parameters can be kept fixed at some initially chosen values.

A.6 Homogeneous Polynomial Equations

The only application we’ve made so far of homogeneous coordinates is to embed R? in
P2. We haven’t used them yet to write equations of curves on the projective plane.
Let’s try now to do this.

We'll start with the simplest curve on the projective plane, in fact, a projective
line. We want an equation — as for straight lines in real geometry — that will say
if a projective point belongs to a projective line. For example, an equation such as
2x +y — 1 =0 for a straight line on the real plane gives the condition for a real point
[z y]T to lie on that line.

Now, a projective point is a radial line and a projective line a radial plane. Moreover,
a radial line lies on a radial plane if and only if any point of it, other than the origin,
lies on that plane (the origin always does). See Figure A.14.

Therefore, a projective point P = [z y 2|7 belongs to a projective line L, whose
radial plane has the equation az + by + cz = 0, if and only if the real point [z y 2]
lies on the real plane azx + by + cz = 0. It follows that the equation of L is identical to
that of its radial plane:

axr +by+cx=0 (A1)

Accordingly, a projective point P = [x y 2]T belongs to L if it satisfies (A.1). Does
it matter if we choose some other homogeneous coordinates for P? No, because

a(kz) + b(ky) + c(kz) = k(ax + by +cz) =0
so any homogeneous coordinates [kx ky kz]T for P satisfy Equation (A.1).
Exercise A.11. Prove that if the projective line L is specified by the equation
ar +by+cz=0
then it is specified by any equation of the form
(ma)x + (mb)y + (mc)z =0
where m # 0, as well.

Exercise A.12. What is the equation of the projective line through the projective
points 21 — 1]T and [3 4 2]T?

Answer: Suppose that the line is L with equation

ax+by+cz=0
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Since 21 — 1]T and [3 4 2]T lie on L they must satisfy its equation, giving

2a+b—c =
3a+4b+ 2c

Any solution to these simultaneous equations, not all zero, then determines L. As
there are more variables then equations, let’s set one of them, say ¢, arbitrarily to 1,
to get the equations

2a+b-1
3a+4b+2 = 0

These solve to give a = 1.2 and b = —1.4. The equation of the projective line L is,
therefore,

122 —14y+2=0

(or, equivalently, 62 — Ty 4+ 5z = 0, from Exercise A.11.)

Exercise A.13. What is the projective point of intersection of the projective lines
3x+2y—4z=0and x —y+2=07?

Eixercis€ A.14. When are three projective points [z y 2]7, [/ v/ /|7 and [2” y" 2T
collinear, i.e., when do they belong to the same projective line? Find a simple condition
involving a determinant.

A.6.1 More About Point-Line Duality

In Section A.4.2 we tried to understand the point-line duality of the projective plane
from a geometric point of view. We’ll examine the phenomenon now from an algebraic
standpoint.

The correspondence from the set of projective points to the set of projective lines
given by

projective point [a b c]T ~ projective line ax + by + cz =0 (A.2)

is well-defined as, whatever homogeneous coordinates we choose for a projective point,
the image is the same projective line (by Exercise A.11). Moreover, the correspondence
is easily seen to be one-to-one and onto.

The projective line ax + by 4+ ¢z = 0 is said to be the dual of the
projective point [a b ¢]T and vice versa.

Exercise A.15. Prove that a projective point P belongs to a projective line L if
and only if the dual of L belongs to the dual of P.

The preceding exercise implies that if some statement about the incidence of
projective points and lines is true, then so is the dual statement, obtained by replacing
“point” with “line” and “line” with “point”.

Eixercis€ A.16. What is the dual of the following statement? “There is a unique
projective line incident to two distinct projective points.”

From this last exercise one sees, then, the point-line duality of the projective plane
as a consequence of the one-to-one correspondence (A.2) between projective points
and lines. We ask the reader to contemplate if there exists a similar correspondence
between real points and lines.



A.6.2 Lifting an Algebraic Curve from the Real to the
Projective Plane

Let’s see next projective curves more complex than a line. Consider, then, the curve
Q' in P? consisting of the projective points intersecting the parabola ¢

y—a2=0 (A.3)

on R? (the plane z = 1). See Figure A.15.

The intersection of the projective point P = [z y 2]T with the plane z = 1 is the
real point [#/z y/z 1]T, assuming z # 0, for, otherwise, there is no intersection. Now,
[v/z y/z 1]T satisfies the equation of the parabola g if

y/z—(2/2)? =0 = yz—2a"=0
Accordingly, the curve consisting of projective points [z y 2]” which satisfy
yz— 22 =0 (A.4)

is called the lifting @ of ¢ from the real to the projective plane. @ is sometimes simply
called the lifting of ¢ and also the projectivization of q. In this particular case, as a
lifting of a parabola, @ is a parabolic projective curve.

The camera analogy is that @ is the set of rays seen, by intersection with the film
z =1, as q. However, Q is actually one point bigger than Q’, the set of projective
points intersecting the parabola ¢ on R2 as it includes the projective point [0 1 0], the

y-axis of 3-space, which satisfies (A.4), but does not intersect q. So, @ = Q'U{[01 0]T}.

We can justify the inclusion of this extra point, with the help of the proviso from
Section A.5 that a limit of visible rays is visible, as follows.

From its equation y — 2 = 0, a point of q is of the form [z z? 1]T, for any
x. Therefore, the homogeneous coordinates of a projective point intersecting q are
[z 2% 1], for any x, as well. Rewriting these coordinates as [1 1 13]7 we see that its
limit as  — oo is indeed [0 1 0]7. More intuitively, a la the thought experiment of
Section A.4.2, as a point p travels off along either wing of the parabola, the projective
point @(p), corresponding to the line through p, approaches [0 1 0]7, the projective
point corresponding to the y-axis.

A homogeneous polynomial is one whose terms each have the same

degree, the degree of a term being the sum of the powers of the variables in the term.

This common degree is called the degree of the homogeneous polynomial.
An equation with a homogeneous polynomial on the left and 0 on the right is
called a homogeneous polynomial equation.

The equations ax + by + cz = 0 of a projective line and yz — 22 = 0 of a
parabolic projective curve are homogeneous polynomial equations of degree one and
two, respectively. That they are both homogeneous is no accident, as we’ll soon see.

Eixercise A.17. Suppose that p(z1,22,...,2,) is a homogeneous polynomial in n
variables. Then, if [z; 2o ... 2,7 satisfies the equation p(x1, 22, ..., 2,) = 0, so does
[cxy cas ... cay)T, for any scalar c.

Hint: Show, first, that, if p(z1, za,...,2,) is homogeneous of degree r, then

p(cxy, cxa, ..., cxy) = plar, xe,. .., Ty)
For example, for the homogeneous polynomial yz — 2% of degree 2,
(ey)(cz) — (cx)? = ¢*(yz — 2?)

So, in this case, if (x,y, z) satisfies yz — 22 = 0, then so does (cz, cy, cz), because
(cy)(cz) — (cz)? = 0 as well, by the equation just above.
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The preceding exercise implies that a homogeneous polynomial equation of the
form p(x,y,z) = 0 is legitimately an equation in P2, because a point of P2 can be
tested if it satisfies p(x,y, z) = 0, independently of the homogeneous coordinates used
to represent the point. Here are some definitions.

An algebraic curve on the real plane consists of points satisfying an
equation of the form

p(z,y) =0

where p is a polynomial in the two variables « and y. The degree of the curve is the
highest degree of a term belonging to p(x, y).

Familiar algebraic curves of degree one include straight lines, e.g., 2z +y — 3 =0,
while conic sections, e.g., the hyperbola 2y — 1 = 0, are of degree two.

A projective algebraic curve on the projective plane consists of
points satisfying an equation of the form

p(x,y,2) =0

where p is a homogeneous polynomial in the three variables x, y and z. The degree of
the curve is the degree of p(z,y, 2).

Projective algebraic curves that we have already seen are the projective line
ax + by + cz = 0 of degree one and the projective parabola yz — 22 = 0 of degree two.
Let’s get a few more via lifting.

Example A.7. Lift the algebraic curve of degree 3
24+ 32%y+ P +2+2=0
drawn on the plane z = 1, to P2,

Answer: The projective point [x y 2z]T intersects the plane z = 1 at the real point
[#/z y/z 1]T (assuming z # 0). Accordingly, replace = by x/z and y by y/z in the
given polynomial equation:

(2/2)* + 3(2/2)2(y/2) + (y/2)> +a/z+2 =0
— 2/ 4322/ ) a2 +2=0
= 43ty +ytr el +25=0
defining the lifted curve, a projective algebraic curve of degree 3.

Exercise A.18. Lift the algebraic curve of degree 5
eyt — 202 + 32 + 9% —ay+2=0
drawn on the plane z = 1, to P2,

Exercise A.19. Show that the lifting of the straight line
axr+by+c=0

drawn on the plane z = 1, to P2, in fact, is the projective line corresponding to it, as
defined in Section A.4.2. Moreover, this line is a projective algebraic curve of degree 1.

It should be fairly clear at this point that the lifting of an algebraic curve p(z,y) = 0
is a projective algebraic curve p(z,y, z) = 0 of the same degree. We leave a formal
proof to the reader in the following exercise.

Eixercise A.20. Show that the lifting of an algebraic curve p(z,y) = 0 of degree r
is a projective algebraic curve p(z,y, z) = 0 of degree 7.



The process of going from the equation of an algebraic curve
on the real plane to the homogeneous polynomial equation of its lifting is called
homogenization.

It’s worth keeping mind that the process of homogenization depends on the
particular plane on which the algebraic equation holds. E.g., in Example A.7 and
Exercises A.18-A.19 the plane was z = 1. This need not always be the case as we see
next.

Example A.8. Homogenize the polynomial equation
v+ +2=0

drawn on the plane z = 2. (So, # = 2 is treated as a copy of the yz-plane.)
Answer: The projective point [z y z]T intersects the plane x = 2 at the real point
[2 2y/x 22/x]T (assuming x # 0, and multiplying [z y 2]T by 2/x). Accordingly,
replace y by 2y/x and z by 2z/z in the given polynomial equation:

(2y/2)® + (22/2)? + 22/ =0 = 4y?/2? +42%/2® + 22/ =0
Multiplying throughout by x2 one gets the homogenized polynomial equation

4y? +42° 42202 =0

Not surprisingly, giving the algebraic equation on different real planes corresponds,
simply, to specifying the algebraic curve as seen by the viewer on differently aligned
films. The lifting itself, of course, is the set of rays intersecting the film in the given
curve, which does not change.

Exercise A.21. Homogenize the polynomial equation
32t + 202y + 2 + 222 +ay+2 =0
drawn on the plane z = 4.

Exercise A.22. Homogenize the polynomial equation

2+ 2zz — 2*

drawn on the plane y = 2.
It’s possible to define the homogenization of a polynomial in an abstract

manner independent of reference to a particular plane. See Jennings [78].

One sees, then, that the algebraic analogue of lifting an algebraic curve from the
real to the projective plane is homogenization. The reverse process of projecting a
(projective algebraic) curve onto a real plane consists of taking the section of the
projective points composing the curve with the given plane. Algebraically, this means
simultaneously solving the equation of the curve and that of the plane — a process not
surprisingly called de-homogenization.

Example A.9. Project the curve
yz—a2=0

in P? onto the real plane z = 1.
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Answer: De-homogenize the equation of the curve by simultaneously solving

yz—z2 = 0
z =1

to get
y—z2=0

which is the equation of a parabola.

Exercise A.23. Project the curve of the preceding example onto the real plane
r=1.

Exercise A.24. Project the curve
4% + 422 + 222 =0

in P? onto the real plane y = —2.

A.6.3 Snapshot Transformations Algebraically

It should make sense now that the snapshot transformation of an algebraic curve
¢ from one real plane p to another p’ can be determined by (a) first homogenizing
the equation of ¢ to lift it to the projective plane, and, then (b) de-homogenizing to
project it back onto p’.

Exampie A.10. Let’s solve the snapshot transformation problem of Exercise A.7(h)
algebraically. The equation of the unit circle, centered at [L 0]” on the z = 1 plane, is

224+ —22=0

Homogenizing, one gets
22 4+9% —2x2=0
To project onto the plane z = 1, de-homogenize by simultaneously solving

2 2

z+y° —22z = 0
r = 1
to get
2 Lo 1
Yy —22+1=0 = 2=y +§

which indeed agrees with the sketch of a parabola in Figure A.13.
Eixercise A.25. Solve Exercises A.7(g) and (i) algebraically.

A.7 The Dimension of the Projective Plane and
Its Generalization to Higher Dimensions

Note: The next few paragraphs about P? as a surface require recollecting some of the
material from Section 10.2.12 on surface theory. If the reader is not inclined to do so,
then she can safely skip ahead to Definition A.8. It won’t affect her understanding of
anything that follows.

Why do we say that the projective plane is a projective space of dimension 27
Because, as we’ll see momentarily, P? is a surface. In fact, it’s a regular C> surface,
except that it is not a subset of R3: it’s not possible to embed P? in R3. One must go
at least one dimension higher to R*.



Ignoring for now the question of the space in which it’s embedded, it’s not hard to
find a coordinate patch containing any given point P € P2. Suppose, for the moment,
that P intersects the point p on the plane z = 1 (our favorite copy of R?). See
Figure A.16. Let W be a closed rectangle containing p and B be the set of projective
points intersecting W. The function

point —  the radial line through it

from W to B is a one-to-one correspondence that makes B a coordinate patch.

And what if P doesn’t intersect z = 1, i.e., if P is a point at infinity with respect
to z = 17 Remember, there’s nothing special about z = 1 — simply choose another
non-radial plane with respect to which P is regular.

The reader has guessed by now that there exist projective spaces of various
dimensions. True.

A radial line in R"*! is said to be an n-dimensional projective
point. The set of all n-dimensional projective points is n-dimensional projective space,
denoted P".

PY, not very interestingly, is a one-point space as there is only one line, radial or
otherwise, in R'. We'll try to convince the reader next, without being mathematically
precise, that P! is a circle.

Let U be the upper-half of a circle centered at the origin of R?. Associate with
each radial line in R? its intersection(s) with U. See Figure A.17, where, e.g., the
radial line P is associated with the point p. Each radial line in R? is then associated
with a unique point of U, except for the x-axis, which we denote Q; Q intersects U
in two points ¢; and g2. And, the other way around, every point of U is associated
with a unique radial line, except only for ¢; and ¢o, which are associated with the
same one Q. It follows, then, that the set P' of all radial lines in R? is in one-to-one
correspondence with the space obtained by “identifying” the two endpoints ¢; and ¢
of U as one. But this latter space is clearly a circle (imagine U as a length of string
whose ends are brought together).

One can set up homogeneous coordinates for an arbitrary P” in a manner similar to
what we did for P2. For example, the homogeneous coordinates of a point P € P3 are
the coordinates of any point, other than the origin, on the radial line in R* to which
it corresponds. So the homogeneous coordinates of the point in P? corresponding to
the radial line through [ y z w]T, where z, y, z and w are not all zero, is any tuple
of the form [cx cy cz cw]T, where ¢ # 0.

It’s hard to visualize P? and higher-dimensional projective spaces for the same
reason that it’s hard to visualize R* and higher-dimensional real spaces. The trick is
to develop one’s intuition in P2, as many of its properties do generalize.

A.8 Projective Transformations Defined

That the homogeneous coordinates of a point P € P? are of the form [z y 2] suggests
defining transformations of P? by mimicking the definition of a linear transformation
of real 3-space. In particular, if

a1;  ai12  a13
M= | a1 a2 a3
a3z; azz2 ags

is a 3 x 3 matrix, then tentatively define a transformation of P? by
[zy 2T = Mz y 2]* (A.5)
This definition has the virtue at least of being unambiguous because

[cx cy c2]T = Mcx cy c2]T = c«(M[z y 2]T)
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which represents the same point as M[z y z]T, implying that the choice of any
homogeneous coordinates for P gives the same image by the transformation.

The potential glitch to consider before putting (A.5) into production is if it maps
a non-zero tuple to a zero tuple, for then it would map the homogeneous coordinates
of a point P € P? to a value not even belonging to P2. However, we know from basic

linear algebra that there is a non-zero tuple [z y 2]7 such that
Mlzy 2" =[000]"

if and only if M is a singular matrix; otherwise, M maps non-zero tuples to non-zero
tuples. We conclude that defining a transformation of P2 by (A.5) is indeed valid
provided M is non-singular. Ergo:

If M is a non-singular 3 x 3 matrix, then the transformation
[ty 2T = Mz y 2]"

denoted hM | is called a projective transformation of the projective plane. The
transformation fM of R® — the lincar transformation defined by M — is called a related
linear transformation.

A simple relation between A and fM is the following: if the radial line
corresponding to a point P of P? is [, then that corresponding to A (P) is fM(1), the
image of [ by fM.

Exercise A.26. Prove that if M is a non-singular 3 x 3 matrix and c is a scalar

such that ¢ # 0, then M and cM define the same projective transformation of P?, i.e.,
hlﬂ — th.

The preceding exercise implies that actually there is not a unique linear
transformation related to a projective transformation h™, because f°M is related to
heM = BM | for any non-zero c. However, when we do have a specific M that we are
using to define h™ | then we’ll often speak of the related linear transformation f.

Exercise A.27. Prove that a projective transformation h™ of P? takes projective
lines to projective lines.

Hint: The related (non-singular) linear transformation f* takes radial planes in R3
to radial planes in R3.

Exercise A.28. Prove that the composition h™ o AN of two projective transforma-
tions of P? is equal to the projective transformation hM Y.

A.9 Projective Transformations Geometrically

Our definition of projective transformations was purely algebraic. We would like to
picture, if possible, how they transform primitives in P2. Now, projective primitives
are “seen” by projection onto the real plane — by capture on a point camera’s film as
we've been putting it. Let’s find out, then, what a projective transformation looks
like through a point camera.

Here’s what we plan to do. Start with a primitive s, on the plane z = 1, our favorite
copy of R2, as the designated film. Suppose that the given projective transformation
is h™. Then we'll transform the lifting S of s by A to hM(S). Finally, we’ll project
hM(S) back to z = 1 to obtain a new primitive s’. It’s precisely the change from s
to s’ which is seen as the transformation A by a point camera at the origin. For
example, in Figure A.18, a boxy car is changed (fancifully) into a sleek convertible.

Back to reality, let’s begin with a simple example. Consider a straight segment s
joining two points p and ¢ on z = 1. Given a projective transformation hM, we want
to determine s’. The lifting S of s, which is the set of all radial lines intersecting s, is



hAW
z S /Z\‘ hM(S)/
z=1
> x »x
(0] (0]

Figure A.18: Projective transformation of a car (purely conceptuall).

not hard to visualize: it forms an “infinite double triangle” which lies on the radial
plane containing s and the origin. See Figure A.19(a). The radial lines through p and
q are denoted P and @, respectively.

The related linear transformation f™ transforms s to a segment 5 = pg, where
fM(p) =P and fM(q) = g. See Figure A.19(b). Note that 5 can be anywhere in
3-space, depending on f™, unlike s and s’, which are both on z = 1.

V4 Z
P
Q)
S —7q
D q
z= 1 y
x 5
t
— 7
3 p
(a) (b)

Figure A.19: (a) A segment s on R? and its lifting S (b) fM transforms s to 5 and S to h*(S),
while s’ is the intersection of h™(S) with z = 1.

Moreover, each radial line in S, the lifting of s, is transformed by f* to a radial
line in A™ (S). Each radial line in h™ (S), of course, intersects 5. A diagram depicting
a particular disposition of 3, where it intersects the zy-plane in a single point ¢, is
shown in Figure A.19(Db).

The transformed primitive s’ is the intersection of the radial lines in h*(S) with
z = 1. At this time we ask the reader to complete the following exercise to find out
for herself what it looks like, depending on the situation of s.

Exercise A.29. Show that exactly one of (a)-(c) is true:
(a) 3 does not intersect the xy-plane, equivalently, every radial line in h(S) is a
regular point with respect to z = 1.

In this case, s’ is the segment between the points p’ and ¢’ where A (P) and
hM(Q), respectively, intersect z = 1 (remember that P and Q are the radial
lines through p and ¢, the endpoints of s, respectively). Sketch this case.

(b) 5 intersects the zy-plane at one point, equivalently, exactly one radial line in
RM(S) is a point at infinity with respect to z = 1. Now, there are two subcases:
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Appendix A (b1) If the intersection point, call it ¢, is in the interior of 3, then s’ consists of

PROJECTIVE SPACES the entire infinite straight line through p’ and ¢/, where A (P) and h™(Q),

AND respectively, intersect z = 1, minus the finite open segment between p’ and
TRANSFORMATIONS ¢'. This situation is sketched in Figure A.19(b).

(b2) If the intersection is an endpoint of 3, say P, then s’ is a straight line infinite
in one direction and with an endpoint at ¢’, where h™(Q) intersects z = 1,
in the other. Sketch this case.

(c) 3 lies on the zy-plane, equivalently, every radial line in A (S) is a point at
infinity with respect to z = 1.

In this case, s’ is empty.

The answer to the preceding exercise is not tidy, but in most practical situations
it will be case (a), the most benign of the three, which applies.

So we know now what we set out to find: how the projective transformation of the
lifting of a segment looks like on film. Generally, for any primitive s on the plane, if s’
is the “film-capture” of the transformation by h* of the lifting of s, we’ll call s’ the
projective transformation of s by h™ and denote it hM(s) — giving thus a geometric
counterpart, of the algebraic definition of a projective transformation in Section A.8.
Although hM is well-defined, it is not a transformation of R? in general because h™ (p)
may not even exist for a point p € R2, particularly if p’s corresponding projective
point is taken by M to a point at infinity (which has no film-capture).

In our usage, therefore, h™ can represent either a transformation of projective
space (as defined in Section A.8) or a transformation of real primitives (as just defined
above). There is no danger of ambiguity as the nature of the argument in h™ (%) will
make clear how it’s being used.

Example A.11. The segment s joins p=[1 —1]7 and ¢ = [-2 — 2]7 on the plane

z = 1, the latter identified with R2. The projective transformation A% : P2 — P2 is
specified by

0 0 -1

M=|01 0

1 0 0

which is the matrix corresponding to a rotation f™ of R? by 90° about the y-axis,
clockwise when seen from the positive side of the y-axis. Determine h™ (s).

Answer: fM transforms s to the segment 3 = pg, where p and g are the images by
M of p and ¢, respectively. Multiplying p and g, written as points of z = 1, on the
left by M we get:

p=M[1 —11)7=[-1 —11)F

and
g=M[-2 —21)T=[-1 -2 -2/

As the z-values of p and G are of different signs, an interior point of 3 lies on the
xy-plane. Therefore, we are in case (b1) of Exercise A.29 above.

Let P and () denote the radial lines through p and ¢, respectively. The radial line
hM(P) through p meets z = 1 at hM(p) = [-1 — 1 1]7, which is p itself. The radial
line ™ (Q) through g meets z = 1 at A (¢) = [§ 1 1]7 (multiplying the coordinate
tuple of § by —% to make its z-value equal to 1).

Applying Exercise A.29 case (b1), h*(s) is the entire straight line through the
points [-1 — 1] and [} 1]” minus the finite open segment joining [-1 — 1] to
117

Example A.12. The rectangle r lies on the plane z = 1, the latter identified with

R2. Tts vertices are p; = [0.5 1]7, po = [0.5 —1]7, p3 = [1 —1]7 and py = [1 1]. See

Figure A.20. Determine h (r), where h™ is the same projective transformation as in
678 the preceding example.
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Figure A.20: Rectangle 7 is transformed to the trapezoid hM (r).

Answer: fM transforms r to the rectangle 7 with vertices p; = fM(p;), 1 < i < 4.

Multiplying each p;, written as points of z = 1, on the left by M we get:

pr = Mp511]7 = [-1105)7T

Pz = M5 —11T = [-1 —1057T
p5 = M1 -11T = [-1 —11]%
i = MA11)T = [-111)7

As the z-value of every p;, 1 < i < 4, is greater than 0, none of the edges of 7
intersects the zy-plane. According to case (a) of Exercise A.29 then, hM(r) is the
quadrilateral with vertices at the points h™ (p;), where the radial lines through p;,
1 < i <4, intersect z = 1. See Figure A.20. Multiply the coordinate tuple of each p;
by a scalar to make its z-value equal to 1, to find that

W) = [-221)"
M (py) = [-2 —21)F
M (ps) = [-1 —11]%
Wp) = [-111)7

One sees, therefore, that h™ (r) has vertices at [-2 2]7, [-2 —2]T, [-1 —1]7 and
[-1 17, which makes it a trapezoid.

It’s interesting to note that no affine transformation of R? can map a rectangle to
a trapezoid: as affine transformations preserve parallelism (see Proposition 5.1), at
most they can transform a rectangle to a parallelogram.

Exercise A.30. Exercise A.7(f), where we snapshot transformed a trapezoid to a
rectangle, evidently is related to the preceding example. Say how.

Clearly, with the help of Exercise A.29 we can determine the projective
transformation of any shape specified by straight edges. More general shapes are
curved and curves specified by equations. Let’s see, for example, how a parabola is
projectively transformed.

Example A.13. Determine how the parabola y — 22 = 0 on z = 1, the latter
identified with R?, is mapped by the same projective transformation h™ as in the
previous example.

Answer: The point [z y]T on z = 1, which has coordinates [z y 1]T in R3, is

transformed by fM to the point [z 7 2|7, where
T 0 0 -1 T -1
y|l=({01 0 y | = Y
z 1 0 0 1 T
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which gives
T=-1, Y=y, zZ=x

The image [’ ¥']T of [z y]7 by hM, then, is the point [Z/Z 7/Z]7, where the radial
line through [Z 7 z]7 intersects z = 1. Therefore:

¥ =%T/2=-1/z = z=-1/2
and

v =y/z=y/r = y=yr=—y /2" (usingz=—1/2" from above)

Plugging these expressions for « and y into the equation of the parabola y — 22 = 0,
we have the equation

—y' /2’ —1/2® =0, equivalently, 2y’ +1=0

of the transformed curve, which describes a hyperbola.

Here’s another rather interesting example.

Example A.14. Determine how points of R?, identified with z = 1, are transformed
by the projective transformation A of P? specified by

10 7
M=|0120
0 0 1

Answer: The point [z y]7 on z = 1, which has coordinates [z y 1]7 in R3, is
transformed by f™ to the point [Z 7 Z]T, where

z 1 07 T z+7

y|l=1]0120 y | = Yy

z 0 0 1 1 1

giving

T=x+7, y=uy, z=1
The image [z’ ¥']” of [z y]T by h™M, then, is the point [#/Z 7/Z 1]7, where the radial
line through [Z 7 z]7 intersects z = 1. Therefore,

¥ =T/Z=w+4+T7 and Y =7y/Z=y

which is nothing but a translation by 7 units in the z-direction.

Incidentally, we did not pull the matrix M above out of a hat: it is the
transformation matrix of a 3D shear whose plane is the xy-plane and line the a-
axis (recall 3D shears from Section 5.4).

A projection transformation has just done something beyond the reach of linear
transformations, for a linear transformation cannot translate. Translations, as we
learned in Chapter 5, are in the domain of affine transformations. Further, in
Example A.12, we saw a projective transformation convert a rectangle into a trapezoid,
something beyond even affine transformations. For transformations inspired by and
defined by matrix-vector multiplication, just like linear transformations, projective
transformations certainly seem to carry plenty of additional firepower. It turns out
that this makes them particularly worthy allies in the advancement of computer
graphics.

Exercise A.31. Find a projective transformation to translate points of R? 3 units
in the z-direction and 2 in the y-direction, i.e., whose displacement vector is [3 2]7.
Hint: Think another shear.



Eixercise A.32. Determine how the segment s on R2, the latter identified with the
plane z = 1, joining p = [2 — 2]7 and ¢ = [-2 1]7, is mapped by the projective
transformation h™ of P? specified by

01 1
M=]1 01
110

Eixercis€ A.33. Determine how the hyperbola zy = 1 on z = 1, the latter identified
with R?, is mapped by the same projective transformation h™ as in the previous
exercise.

Part answer: The problem is not hard but there is a fair amount of manipulation.
The point [z y]7 on z = 1, which has coordinates [z y 1]7 in R3, is transformed
by ™ to the point [Z 3 2|7, where

T 01 1 P
7l=1101 y
z 1101

Let’s flip this equation over with the help of an inverse matrix:

-1

x 011 z 1 -1 1 1 z
y =110 1 vl=5|1 11 7
1 110 z 1 1 -1 z

which gives
1, 1. _ 1_
e=5(-T+7+7) y=5@E-7+7 1=5@+7-%)

Plugging these expressions into the equation of the hyperbola zy = 1 = 12 we get:

1 1
1(CFHTHRE-T+7) = Z(5+§—z)2
Now, the image [’ y']” of [ y]T by hM is the point [z/Z 7/Z]7, where the radial
line through [Z 7 Z]7 intersects z = 1. We ask the reader to complete the exercise by
dividing the preceding equation by z2 throughout to obtain an equation relating z’
and y’, and identifying the corresponding curve.

Eixercise A.34. Determine how the straight line x +y+1 =0 on z = 1 is mapped
by the same projective transformation h™ as in the previous exercise.

Exercise A.35. We saw in Example 5.4 that affine transformations preserve convex
combinations and barycentric coordinates. Show that projective transformations in
general do not.

Projective transformations of P2 can be thought of as a powerful class
of pseudo-transformations of R — pseudo because a projective transformation may
map a regular point to a point at infinity, in which case the corresponding point of R?
has no valid image. If one is careful, however, to restrict its domain to a region of R?
where it is valid throughout, one may be able to exploit the ability of a projective
transformation to do more than an affine one.

A.10 Relating Projective, Snapshot and Affine
Transformations

We’ll explore in this section the inter-relationships between projective, snapshot and
affine transformations.
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A.10.1 Snapshot Transformations via Projective
Transformations

Snapshot transformations, being transformations of an object seen through a point
camera as the film changes alignment, are geometrically intuitive. They are, in fact, a
kind of projective transformation, as we’ll now see.

Consider again Example A.12 for motivation. We saw that the rectangle r on the
plane z = 1 (aka R?) with vertices at p; = [0.5 1]7, po = [0.5 —1]7, ps =[1 —1]T

and ps = [1 1]7 is mapped to the trapezoid r' = h™ (r) with vertices at p} = [-2 2|7,
ph=[-2 = 2|7, p =[-1 —1)7 and p} = [-1 1]T, by the projective transformation
hM specified by
0 0 -1
M=|01 0
1 0 0

See Figure A.21(a).

x=1
(a) (b)

Figure A.21: (a) Projective transformation h™ maps rectangle r to trapezoid ' = hM (r) (b) r’ is

the “same” as 7”/, the picture of 7 captured on a film along x = 1.

We observed, as well, that the related linear transformation f is a rotation of
R? by 90° about the y-axis, which is clockwise when seen from the positive side of the
y-axis.

Denote the radial line through p; by P;, 1 < i < 4, and their respective images
hM(P;) by P!. Now rotate the radial lines P/, as well as the plane z = 1, an angle of
90° about the y-axis, this time counter-clockwise when seen from the positive side of
the y-axis, in order to undo the effect of f™; in other words, apply fMil. We see the

following:

(a) The radial line P/, of course, rotates back onto (its pre-image) the radial line P;,
1<i<4.

(b) The plane z =1 is taken by the rotation onto the plane z = 1.

(¢) The trapezoid ', as a consequence of (a) and (b), rotates onto a trapezoid
r" with vertices at the intersections p of P, with z = 1, for 1 < i < 4. See

Figure A.21(b) (note that the edge of r that happens to lie on the intersection
of the planes z = 1 and © = 1 is shared with r”).

But 7" is precisely the snapshot transformation of r from the film along z = 1
to the one along z = 1! Here’s what is happening. The image ' is obtained by
applying the rotation f* to the radials P; and intersecting them with the plane z = 1,
while 7’ is obtained from 7’ by applying the reverse rotation fM ' which takes the
radials back to the where they were, and, at the same time, changes the intersecting



plane from z = 1 to & = 1. Therefore, the transformation from r to 7’/ comes from a
change in the plane (= film) intersecting the radials, which is precisely a snapshot
transformation.

One sees, therefore, that, generally, a snapshot transformation in which the film is
re-aligned by a rotation f about a radial axis is equivalent to a projective transformation
whose related linear transformation is f~!, in that the images are identical, though
situated differently in space (precisely, the two images differ by a rigid transformation
of R3). But, how about snapshot transformations where the new alignment of the film
cannot be obtained from the original by mere rotation? To answer this question, we
ask the reader, first, to prove the following, which says that an arbitrary snapshot
transformation can be composed from two very simple ones.

Exercise A.36. Prove that any plane p in R3 can be aligned with any other p’ by a
translation parallel to itself followed by a rotation about a radial axis.

Therefore, any snapshot transformation is the composition of two: first, a snapshot
transformation from one film to a parallely translated one and then another, where
one film is obtained from the other by a rotation about a radial axis.

Hint: See Figure A.22.

We have already seen how a snapshot transformation from one film to a rotated
one is equivalent to a projective transformation. A snapshot transformation to a
parallely translated one is also equivalent to a projective transformation, as the next
exercise asks the reader to show.

Exercise A.37. Suppose that two parallel non-radial planes p and p’ in R? are at a
distance of ¢ and ¢’ from the origin, respectively. Then the snapshot transformation
from p to p’ is equivalent to the projective transformation h™, where

< 0 0 y
M=|0 < 0 |==1
c ’ C
0 0 ¢

(i-e., a projective transformation whose related linear transformation is a uniform

scaling of R? by a factor of % in all directions).
Hint: See Figure A.23.

Putting the pieces together we have the following proposition:

Proposition A.1. A snapshot transformation k from a non-radial plane p in R? to
another p' is equivalent to a projective transformation hM of P2, in the sense that the
images of primitives by k and h™ are identical modulo a rigid transformation of R3.

In particular, k is equivalent to the projective transformation h™ which is the
composition of a projective transformation h*!, whose related linear transformation
is a uniform scaling, with a projective transformation kY, whose related linear
transformation is a rotation of R? about a radial azis.

In other words, k is equivalent to h® , where d is a scalar and N is the matriz of
a rotation of R® about a radial axis. |

Exercise A.38. Determine the projective transformation equivalent to the snapshot
transformation from the plane z = 1 to the plane x = 2.

A.10.2 Affine Transformations via Projective
Transformations

We begin by asking if there exist projective transformations of P? that respect regular
points, i.e., map regular points to regular points. Such a transformation could then
be entirely captured on film because it takes no point of the film out of it, as would
happen, say, if a regular point were mapped to one at infinity. Looking back at
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Figure A.22: Aligning
plane p with p’ by a
parallel displacement, so
that their respective
distances from the origin
are equal, followed by a
rotation.

W /

Figure A.23: A
snapshot transformation
to a parallel plane is
equivalent to a scaling by
a constant factor in all
directions.
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“pseudo”, but a true transformation of R2.
So suppose the film lies along the plane (surprise) z = 1. What condition must a
projective transformation h™, where

ail a2 a3
M= a1 az ass
a3y azz2 ass

satisfy in order to transform each point regular with respect to z = 1 to another such?
Homogeneous coordinates of regular points are of the form [z v 1]7. Now,

a1 + a2y + a3
hM([m y 1]T) =Mz y 1]T = | @212 + ag2y + ao3
a31T + az2y + ass

For this image point to be regular we must have
a312 + azg2y + ass # 0

However, if either one of a3; and asy is non-zero, or if asz is zero, then it’s possible to
find values of x and y such that asix + asoy + ags = 0. The conclusion then is that
for hM to transform all regular points to regular points, one must have both as; and
a3 equal to zero and azz non-zero. Therefore, M must be of the form

ai; a2 @13
a1 a2 Q23
0 0 ass

with asgs # 0. By Exercise A.26, M can be multiplied by 1/ass to still represent the
same projective transformation, so one can assume ass = 1, implying that the form of
M is

ail a2 ai3

az1 a2 @23
0 0 1

In this case, h™ transforms [z y 1]7 to

ail a2 Qi3 x an + a2y + ais
a1 G2 Q23 Y | = | G217+ azey + ass
0 0 1 1 1

Tossing the last coordinate, it transforms [z y]7 € R? to

anT +ay+az | _ | ain a2 T a3
= +
21T + ag2y + ag3 a1 G2 y a3

which is precisely an affine transformation!

We conclude that a projective transformation of P? that respects regular points
gives nothing but an affine transformation of R?. Conversely, it’s not hard to see
that any affine transformation of R? can be obtained as a projective transformation
preserving regular points. We record these facts in the following proposition.

Proposition A.2. An affine transformation of R? is equivalent to a projective
transformation of P2, in particular, one that respects reqular points.

Conwersely, a projective transformation of P? that respects regular points is
equivalent to an affine transformation of R2.



Evidently, the constraint to respect regular points is a burden on projective Section A.11
transformations. It dumbs them down to affine and all the excitement of parallel lines DgrsioNER PROJECTIVE
turning into intersecting ones, rectangles into trapezoids, and circles into hyperbolas TgransrorMATIONS
is lost!

However, one does see now a good reason for the use of homogeneous coordinates of
real points in computing affine transformations. When first we did this in Section 5.2.3,
it seemed merely a neat maneuver to obtain an affine transformation as a single matrix-
vector multiplication. The bigger picture is that affine transformations are a subclass of
the projective. Therefore, as the latter are obtained (by definition) from matrix-vector
multiplication, so can the former, provided we relocate to projective space, in other
words, use homogeneous coordinates.

A Roundup of the Three Kinds of Transformations

Snapshot and affine transformations are subclasses of the projective, as we have just
seen. How about the relationship between these two subclasses themselves? Are
snapshot transformations affine or affine transformations snapshot?

At the start of Section A.10.1 we saw a projective transformation, equivalent,
in fact, to a snapshot transformation, map a rectangle to a trapezoid. This is not
possible for an affine transformation to do, as it is obliged to preserve parallelism
(Proposition 5.1). Therefore, snapshot transformations are certainly not all affine.

A shear on the plane, an affine transformation, can map a rectangle to a non-
rectangular parallelogram. We leave the reader to convince herself that this is not
possible for a snapshot transformation. So not all affine transformations are snapshot.

We see then that neither of the two subclasses, snapshot and affine, of projective
transformations contains the other. However, what transformations, if any, do they
have in common? We ask the reader herself to characterize the transformations at the
intersection of affine and snapshot in the next exercise.

Projective

Exercise A.39. Prove that projective transformations which are both affine and
snapshot are precisely those whose related linear transformation is a uniform scaling.

The final important question on the relationship between the three classes is if
the union of snapshot and affine covers projective transformations or if the latter is
strictly bigger. In Exercise A.42 in the next section we’ll see an example of a projective
transformation neither snapshot nor affine. Therefore, indeed, the class of projective  pi,e A.24: Venn
transformations is strictly bigger than the union of snapshot and affine. Figure A.24  diagram of transformation
summarizes the relationship between the three classes. classes of R?.

A.11 Designer Projective Transformations

We know from elementary linear algebra that a linear transformation is uniquely
specified by defining its values on a basis. Here’s a like-minded claim for projective
transformations of P2.

Proposition A.3. If two sets {P1, Py, P3, Py} and {Q1,Q2,Qs,Q4} of four points
each from P? are such that no three in any one set are collinear, then there is a unique
projective transformation of P? that maps P; to Q;, for 1 <i < 4.

Proof. Choose non-zero vectors pi, ps,p3 and py from R? lying on P;, Py, P; and
Py, respectively, and non-zero vectors q1, ¢o, q3 and ¢4 lying on Q1,Q2, Q3 and Qq,
respectively.
Since P;, P, and Ps do not lie on one projective line, p1, p2 and ps do not lie on
one radial plane. The latter three form, therefore, a basis of R3. Likewise, q;, ¢2 and
¢3 form a basis of R3 as well.
Let ¢1, co and c3 be arbitrary scalars, all three non-zero, whose values will be
determined. As ¢, g2 and g3 form a basis of R?, so do ¢1q1, caqo and c3qs. Therefore, 685
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there is a unique non-singular linear transformation f™ : R® — R? such that
M (pi) = cigi, for 1 <i <3

which, then, is related to a projective transformation h™ : P2 — P2, such that
WM (P) = Qy, for 1< <3

It remains to make hM(P,) = Q.
As pq, po and p3 form a basis of R3, there exist unique scalars «, 8 and ~y such
that

pa = api + Bp2 +p3

Now, a, 8 and « are all three non-zero, for, otherwise, p, lies on the same radial plane
as two of p1, po and ps3, which implies that Py lies on the same projective line as two
of P;, P, and P5, contradicting an initial hypothesis. Likewise, there exist unique
non-zero scalars, A, 4 and v such that

g4 = Aq1 + pg2 + vqs
For
WM (Py) = Q4
to hold, then, one requires a scalar ¢4 # 0 such that
Mpa) =
ca(Aq1 + pgz + vg3)
Acsqr + pcaqa + veaqs (A.6)

However,

M) = M(apy+ Bp2 + ps)
= afMp) + BfM(p2) + .M (ps)
= aciq1 + Beaqe + ve3q3 (A7)

Combining (A.6) and (A.7) one has
aciqr + Beaqe + 7633 = Acaqy + peage + veags
As g1, g2 and g¢3 is a basis of R?, it follows that
acy = Acg,  Bea = pcs, ez =vey
giving
a = a)es, c2=(p/Bles, c3=v/7)cs
determining ¢y, co, c3 and ¢4 uniquely, up to a constant of proportionality, so completing
the proof. a

The following corollary, which is a straightforward application of the proposition,
is particularly important.

Corollary A.1. Any non-degenerate quadrilateral, i.e., one with no three collinear
vertices, in R? can be projectively transformed to any other such. a

More than just theoretically, the proposition is important in that it suggests how
to go about finding projective transformations specified at only a few points.

Example A.15. Determine the projective transformation h™ of P2 mapping the
projective points

P=[1007T, P,=00107, 3=001T and P, =[1 1 1)
to the respective images

Q1=2137,Q=[-1 -117,Q;=[011]T and Q, = [0 0 6]T



Answer: Choose (not particularly imaginatively) Section A.11
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in R lying on P;, 1 <i < 4, and
a=0213", @=[-1 -11F, gs=[011]T and gs =100 6]

lying on Q;, 1 < i < 4.
The linear transformation fM : R® — R? such that fM(p;) = ciq;, for 1 <i < 3,
where ¢, co and c3 are non-zero scalars, is easily verified to be given by

201 —C2 0
M = C1 —C2 C3
3(31 Co C3

One can verify as well that

P4 =p1+p2+Dp3
and
Ga = q1 + 2g2 + g3
Therefore,
M (pa) = M (P14 p2+p3) = M (1) + Y (p2) + M (p3) = c1q1 + c2g2 + c303
Accordingly, if fM(p4) = c4q4, for some ¢4 # 0, then

c1G1 + c2q2 + c3q3 = ca(q1 + 2q2 + q3) = caq1 + 2¢4G2 + c4qs3
which implies that
c1=cq4, Co=2c4, C3=c4

Setting ¢4 = 1, one has: ¢y =1, co =2, ¢ = 1, ¢4 = 1. One concludes that the
required projective transformation h™ is given by

2 -2 0
M=|1 -2 1
3 2 1

The following example will help in an application of projective transformations in
the graphics pipeline.

Example A.16. Determine the projective transformation h* of P? that transforms
the trapezoid ¢ on the plane z = 1 (aka R2?) with vertices at

pr=[-11", pa=[11", ps=122]" and ps = [-2 2]"
to the rectangle ¢’ on the same plane with vertices at

pr=-117 py =117, py=[12]" and p = [-1 2"
See Figure A.25.

Answer: Suppose that the required projective transformation h™ is defined by the
matrix
ay; a2 aig
M= | a1 a2 a2
azy az2 ass

We have to determine the a;; up to a non-zero multiplicative constant. 687



Appendix A Ai Y

PROJECTIVE SPACES /

AND P p;
TRANSFORMATIONS p“t . P
—p T4
pl_pl p2=p2’
z=1
|
0

Figure A.25: Transforming the trapezoid q on z = 1 to the rectangle (bold) ¢’.

The two sides p1ps and pap3 of the trapezoid ¢ meet at the regular point (with
respect to z = 1) [0 0 1], while the corresponding sides p; p/y and php} of the rectangle
¢’ are parallel and meet at the point at infinity [0 1 0]T. The transformation must,
therefore, map [0 0 1]7 to [0 1 0]7, yielding our first equation

Moo 1T) =107

(the RHS could be c[0 1 0]7 for any non-zero scalar ¢, but there’s no loss in assuming
that ¢ = 1) which translates to the matrix equation

ail a2 13 0 0
G21 Q22 Q23 0)1=1]1
asy as2 a3z 1 0

giving
ai3=0, ag=1 axz=0
So we write
a;n aiz 0
M= an axp» 1
azy azx 0

That we have h™ (p,) = p} and hM (p3) = p) gives two more matrix equations

aj;p  ai2 0 —1 —C ai;  ai2 0 1 d
a1 Q22 1 1 = C and a1 Q22 1 1 = d
as; as2 0 1 C as; as2 0 1 d

where ¢ and d are arbitrary non-zero scalars, yielding the six equations

—aj1tae = —c¢
—ag1 + az +1

—ag) + asz

QU a6 0

a11 + aiz
as1 +ax+1 =

a3y +azx = (AS)

Subtracting the first equation from the fourth, adding the second and fifth, and
adding the third and sixth, one gets

_— c+d c+d c+d
688 ail = 5 a2 = = D)

-1, azp=



implying that
22 = A11 — 1 and asgy = ail

Likewise, adding the first and fourth equations, subtracting the second from the
fifth, and subtracting the third from the sixth, one gets

Q12 = 21 = a3}

We can now write
a11 a2 0
M = 12 Q11 — 1 1
a2 a1 0

That hM (p3) = py and hy(ps) = p)j give another two matrix equations

ail ai12 0 2 (&
aig Q11 — 11 2 = 2e and
a1 a1 0 1 c

a1l ai2 0 -2 =/

a2 ai1 — 1 1 2 = 2f

a2 aix 0 1 !

where e and f are arbitrary non-zero scalars. Again one obtains six equations, as in
(A.8), which can be solved to find that

ail = —1/2 and a2 = 0

We have, finally, that

~1/2 0 0
M=| 0 =32 1
0 -1/2 0

(or, a non-zero scalar multiple of the matrix on the RHS).

Exercise A.40. The projective transformation h™ of the preceding example mapped,
by design, the regular point [0 0 1]7 to the point at infinity [0 1 0]7. What other
regular points, if any, does it map to a point at infinity?

Eixercise A.41. Determine the projective transformation A of P2 that transforms
the rectangle ¢ on the plane z = 1 with vertices at

p1=1[051", pa=[05 1", ps =[1 —1]" and py = [1 1]"
to the trapezoid ¢’ on z = 1 with vertices at
pi=[-22", ph=[-2 2", py = [-1 —1)" and p} = [-11]"

(see Example A.12 earlier for the solution).

Eixercise A.42. Prove that there exist projective transformations which are neither
affine nor snapshot.

Suggested approach: Corollary A.1 implies that a square can be projectively
transformed to any non-degenerate quadrilateral. Non-degenerate quadrilaterals ¢
that can be obtained from a square ¢ by a snapshot transformation are the intersections
of a non-radial plane with the “cone” C' through ¢ (see Figure A.26). Those that can
be obtained by an affine transformation, on the other hand, are parallelograms.

Therefore, if one can find a non-degenerate quadrilateral ¢” which is neither a
parallelogram nor the intersection of C' with a plane, then one shows that there exists
a projective transformation neither affine nor snapshot.

Section A.11
DESIGNER PROJECTIVE
TRANSFORMATIONS

0

Figure A.26: The
square ¢ is mapped to the
quadrilateral ¢’ by a
snapshot transformation.
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