\IF

Extract from Computer Graphics through OpenGL: From
Theory to Experiments by Sumanta Guha, Third Edition

|CHAPTER 1 9

Hermite

of control points, in other words, finding a curve (or surface) that passes

through each. Bézier curves, as we know, mandatorily interpolate only
their first and last control points, while Bézier surfaces only the four corner control
points. B-spline curves and surfaces of quadratic and higher degree do not necessarily
interpolate any of their control points. Nevertheless, we learned in Section 18.2.5 how
to force a B-spline curve to interpolate a control point by raising the multiplicity of a
knot. In fact, the so-called standard knot vector, with repeated end knots, is often
used to ensure the interpolation of end control points.

O ur objective in this chapter is to learn a method of interpolating a set

However, if a designer wishes to draw a curve or surface interpolating all its control
points, then it’s best to apply an intrinsically interpolating technique, rather than try
to coax an approximating one like Bézier or B-spline into interpolating. A popular
class of interpolating curves is that of the Hermite splines and this short chapter
introduces this class, together with two special subclasses, that of the natural cubic
splines and the cardinal splines. We discuss Hermite surface patches, as well, to
interpolate 2D arrays of control points.

We begin with a discussion of general Hermite splines in Section 19.1. These
curves, unfortunately, are guaranteed only to be piecewise smooth — they can
have corners at control points. Moreover, the user is required to specify tangent
vectors at all the control points. The subclass of natural cubic splines, the topic
of Section 19.2, automatically determines these tangent vectors by imposing an
additional C2-continuity requirement. Cardinal splines, in Section 19.3, are based
upon yet another scheme to automatically specify tangent vectors at control points.

We make a brief presentation of Hermite surfaces in Section 19.4 and conclude in
Section 19.5.

19.1 Hermite Splines

A Hermite spline, also called a cubic spline, interpolating a sequence Py, P1,..., P,

of n + 1 control points, is a piecewise cubic curve c passing through the control points.

Each cubic arc of ¢ joins successive pairs of control points, so that the entire spline
comprises n cubic arcs joined end to end. Figure 19.1 shows a Hermite spline through
four control points on a plane. There are corners at the middle two because the
tangents of the cubics on either side don’t agree.

Terminology: A cubic arc is a part of a cubic curve; e.g., an arc of the graph of y = 2°

is a cubic arc on the plane. Sometimes we’ll loosen cubic to mean a polynomial of
degree at most three, rather than exactly three.

Figure 19.1: A
(non-smooth) Hermite
spline through four
control points, composed
of three cubic arcs.

591

ait
Text Box
Extract from Computer Graphics through OpenGL: From Theory to Experiments by Sumanta Guha, Third Edition

592

Chapter 19 Hermite splines are named after the nineteenth-century French
HerviTe mathematician Charles Hermite.

Curves of degree higher than three could be used to interpolate, or
even lower, e.g., quadratic. However, three is a “Goldilocks” degree, high enough to
assure flexibility, yet low enough to be computationally efficient.

Hermite interpolation for evident reasons is often called cubic interpolation.

We’ll soon find a way to eliminate the corners in the interior and create a smooth
Hermite spline through a given sequence of control points, but let’s see first how to
make a single cubic arc joining two arbitrary points P and Q.

Write the parametric equation of a general cubic curve ¢ as

c(u) = Asu® + Agu® + Aju+ 4y (0<u<1) (19.1)

where each A;, 0 < ¢ < 3, is a point — precisely, its vector of coordinates — in the
ambient space. If you are wondering about polynomial coefficients which are vectors
rather than scalars, then consider the following example.

Example 19.1. Suppose that we are interested in Hermite splines in the real world
so that our ambient space is R3. Then the equation of a cubic curve is claimed to be

c(u) = Azu® + Asu® + Aju+ Ay (0<u<1)

where each A;, 0 < i < 3, is a point in 3-space.
To illustrate, say,

As=1-120T, 4,=[30 —2]7, A, =[4347, and 4o=[08 7T
Then,

cw) = [-120%u® + 30 —2Tu?® + 4347w + 0877
[ud+3u® +4u 20*+3u+8 —2ui+4u+ 77

over the interval [0,1]. As one would expect, the cubic ¢ in R® is simply a scalar cubic
in each of its three coordinates.

Example 19.2. Express in the form (19.1) the twisted cubic given parametrically
by

Answer:
c®) =2 =0T +010%2+[100]%t

Returning to the general form (19.1) of the cubic, rewrite it as a matrix equation:

Az
Ay
Ay
Ap

c(u) = [u? v? u 1] (0<u<l) (19.2)

Note: The RHS is a product of a 1 X 4 matrix of scalars with a 4 x 1 matrix of
vectors, but this is not a problem if we appropriately multiply a vector by a scalar
while following the usual rules of matrix multiplication.

Differentiating (19.2) one obtains the derivative of ¢ as

0<u<1) (19.3)

Substitute 0 and 1 for u in Equations (19.2) and (19.3) to find that

C(O) = Ao, C(l) = A3+ A+ A1+ Ao, CI(O) = Ay, C/(l) =3A3+2A2+ Ay (19.4)
It seems that if one could specify ¢(0), ¢(1), ¢/(0) and ¢/(1), then one would have four
equations in the four unknowns Ag, Ay, A2 and As, which should solve to find these
coeflicients and specify ¢ (alert: that’s four vector equations in four vector unknowns,
so, e.g., if we are in 3-space, we’ll have actually twelve equations in twelve scalar
unknowns).

Since we're looking for a cubic arc ¢ from P to @, we know at least that ¢(0) = P
and ¢(1) = @Q; as for the tangent vectors ¢/(0) and ¢/(1), we have freedom to specify
them as we please. Let’s choose them to be two vectors denoted P’ and @', respectively.
See Figure 19.2.

Accordingly, write (19.4) as

P:Ao, Q:A3+A2+A1+A0, P/:Al, Q/:3A3+2A2+A1 (195)
which in matrix form is the equation
P 0 0 01 As
Q| _|1 111 Agy
Pl o010l (19.6)
Q' 3210 Ao
Solve this equation by inverting the coefficient matrix as follows
As 000 1] P
As _ 1 1 11 Q
Ay - 00 10 P’
Ao |3 2 10 Q'
2 —2 1 1 P
_ -3 3 -2 -1 Q
= lo o 1 ol|P (19.7)
| 1 0 0 O Q'

to see that the four coefficients Ag, A1, A2 and A3 can indeed be derived from the
four boundary constraints P, @, P’ and Q. The 4 x 4 matrix in the second line of the
equation is called the Hermite matriz and denoted My, so (19.7) is written concisely
as

[A3 Ay Ay Ag)" = My [P Q P' Q" (19.8)

Finally, let’s use (19.2) to write ¢’s equation in terms of its boundary constraints:
[u3 ’LL2 u 1] [Ag A2 Al Ao}T

[w® u? w1 My [P Q P Q17

(2u? — 3u? + 1) P+ (—2u® + 3u?) Q +

c(u)

(u® — 2u* +u) P’ + (v® — u?) Q' (19.9)
in 0 < wu <1, after performing the matrix multiplications in the second line.
Therefore,
c(u) = Ho(u) P+ Hi(u) Q + Ho(u) P’ + H3(u) Q" (0<u<1) (19.10)

where the polynomials

Hy(u) = 2u® — 3u? + 1,
Hy(u) = v — 2u® +u,

Hy(u) = —2u® + 342,
H3(u) = u® — u?

Section 19.1
HERMITE SPLINES

c(0)="P

c1)=90
c(0)=P
=0

Figure 19.2: Four

boundary constraints on a
cubic curve c.

593

Chapter 19
HERMITE

Figure 19.4: Screenshot
of hermiteCubic.cpp.

594

are called Hermite blending polynomials, which, of course, are blending functions, but
very different clearly from those used earlier in Bézier and B-spline theory; moreover,
they blend not just control points, but tangent vectors as well, as one sees in (19.10).
Their graphs are sketched in Figure 19.3. Certain symmetries are evident. Observe,
as well, that Hs(u) is non-positive in 0 < u < 1, reaching a minimum value of nearly
—0.15.

-0.2

Figure 19.3: Hermite blending polynomials (not exact plots).

The curve c(u) itself is called a Hermite cubic. Equation (19.10) is called the
geometric form of the cubic because its expression is in terms of ¢’s boundary constraints,
while (19.1) is its algebraic form.

Readers familiar with the popular Adobe Illustrator drawing package
will recognize that its pen tool, in fact, is used to draw Hermite cubics by specifying
endpoints and editing tangents there.

Eixercise 19.1. Use calculus to determine the maximum value of Hy(u) and the
minimum value of Hg(u) in the interval [0, 1].

Exercise 19.2. Determine the symmetries among the Hermite blending polynomials.
For example, that Ho(u) and H;(u) are mirror images across the vertical line u = 3
down the middle of the parameter interval [0, 1] can be seen by substituting (1 — u)
for u in the equation of one to obtain that of the other.

How about the relationship between Hs(w) and Hs(u)? Do you see any symmetries?

Exercise 19.3. Prove the affine invariance of the cubic curve c given by
Equation (19.10).

Note: Keeping in mind that an affine transformation is a linear transformation
followed by a translation, we’ll want its linear transformation part applied to all four
boundary constraints P, @, P’ and Q’, while the translation should apply only to P
and Q.

Eixperiment 19.1. Run hermiteCubic.cpp, which implements Equation (19.10)
to draw a Hermite cubic on a plane. Press space to select either a control point or
tangent vector and the arrow keys to change it. Figure 19.4 is a screenshot. The
actual cubic is simple to draw, but as you can see in the program we invested many
lines of code to get the arrow heads right! End

Eixercise 19.4. What sort of curve is ¢ if the two boundary constraints P’ and
@' are both zero (i.e., if the two end velocities vanish)? Determine this from the
geometric form of the Hermite cubic and verify it in the preceding program.

It’s interesting to contrast (19.10) with the equation of the cubic Bézier curve
(Equation (17.8)):

C(U) = BO73(U)P0 + Bl,g(u)Pl + B273(U)P2 + Bg,g(u)Pg (0 S u S 1)

In the case of the Bézier curve, the control points are blended with weights equal to Section 19.2
the Bernstein polynomials of degree 3; in the case of the Hermite cubic, the two end NaTurAL CUBIC
control points and their respective tangents are blended with weights equal to the Springs
Hermite blending polynomials, which are of degree 3 as well.

Since a Hermite cubic interpolates not only its two specified control
points, but also the specified tangents there, it’s said to make a first-order interpolation
(versus a zeroth-order one which would interpolate merely control points).

Let’s return to the original problem of joining successive pairs of the n + 1 control
points Py, P, ..., P, by means of cubic arcs so that the resulting Hermite spline is
smooth. A strategy that comes to mind from the discussion above is to ask the designer
to specify, in addition to the n 4+ 1 control points, the tangent vectors Pj, Py,..., P},
at each, as indicated in Figure 19.5.

Figure 19.5: Specifying a Hermite spline by specifying the tangent vector at each control point.

Then, using (19.10) to manufacture each of the n successive Hermite cubic arcs
¢i, 0 < i < n, subject to the respective boundary constraints P;, Pii1, Pj and P/,
yields a C'-continuous Hermite spline, as the derivatives on either side of each internal
control point agree.

However, asking the designer for n + 1 tangent values, in addition to the control
points themselves, may be a bit much. It would be nice to have an automatic way
to deduce these tangent values from other constraints, transparently to the user. In
fact, there is and we’ll discuss next two popular types of Hermite splines arising from
particular sets of constraints. These are the natural cubic and cardinal splines.

19.2 Natural Cubic Splines

A natural cubic spline is a Hermite spline with two constraints: (a) it is C2-continuous,
i.e., its second derivative is continuous, and (b) its second derivative vanishes at its
two end control points. It turns out, as we’ll see, that these two constraints are enough
to uniquely determine the spline.

Assume that the n + 1 control points through which a natural cubic spline passes
are Py, P, ..., P,. Because of C'-continuity — mind that C?-continuity implies C''-
continuity — one assumes that the tangents at the control points are well-defined, in
particular, that there are no corners and the value of the tangent is the same on either
side of a control point. Say the tangent values at Py, Pi,..., P, are Pj, P{,..., P!,
respectively. We’ll compute these values from the constraints given.

Rewrite (19.9) as the equation of the cubic arc ¢; from P; to Py1:

ci(u) = (2u® =3 +1)P + (—2u® +3u?) Py +
(W =20 +u) Pl + (uW® —u?) P, (0<u<1l)

Differentiating twice one finds the second derivative
¢i (u) = (12u—6) Pi+(—12u+6) Piy1+(6u—4) P+ (6u—2) P/, (0<u<1) (19.11)

Observe now that the constraints on a natural cubic spline through Py, P, ..., P,
can be written as the n + 1 equations:

cp(0)=0, " ;(1)=/(0), for 1<i<n-1, cr_(1)=0 595

596

Chapter 19
HERMITE

the middle equations saying that the values of the second derivative on either side of
each internal control point are equal, assuring C?-continuity. Expand the constraint
equations using (19.11):

—6Py+ 6P, —4P, — 2P, = 0
6Pi—1 — 6P + 2P| + 4P = —6P, + 6Py — 4P/ — 2P, ;,1<i<n—1
6P,—1 — 6P, +2P,_, +4P, = 0

Simplifying and rearranging, we have the system

2P+ P = —3Py+3P,
Pl +4P[+ P, = —3P_1+3Py;, 1<i<n-1
Pi_1+2P, = —3P,.1+3P, (19.12)

of n + 1 equations in n + 1 unknowns, which can be solved for the P/ in terms of the
P;. In fact, writing out the system (19.12) in matrix form one obtains

210000...0000 P} [—3Py+3P,
141000...0000 P —3Py + 3P,
014100...0000 P} —3P; + 3Ps
001410...0000 P} = —3P, + 3P, (19.13)
000000...014 1 - —3P,_2 + 3P,

| 000000...0012 || P | —3P._1+3P, |

where the coefficient matrix is tridiagonal because it has non-zero entries only along
the principal diagonal and its two neighboring diagonals. Tridiagonal matrices are
particularly efficient to invert [116]; accordingly, equation systems with a tridiagonal
coefficient matrix are efficiently solvable .

Consequently, using the solved values P}, Pj, ..., P} from (19.13) and the geometric
form (19.10) of the Hermite cubic, one determines the n Hermite cubic arcs between
successive pairs from Py, Pi,...,P,. These arcs then join end to end to give the
natural cubic spline through these n + 1 control points.

Exercise 19.5. (Programming) Solve (19.13) by hand for only three control
points Py, P, and P». Write a program to draw a natural cubic spline through three
control points, each of which can be moved on a plane.

Exercise 19.6. Investigate the local control (or lack thereof) of natural cubic splines.
In particular, which of the cubic arcs of a natural cubic spline are affected by moving
only one control point?

Hint: Playing with a natural cubic spline applet (there are many on the web) should
suggest an answer.

19.3 Cardinal Splines

A cardinal spline is a C' Hermite spline whose tangent vector at each internal control
point is determined by the location of its two adjacent control points in the following
simple manner. Say the control points through which a cardinal spline passes are
Py, P1,...,P,. The tangent vector P/ at P;, 1 <4 < n — 1, then is specified to be

parallel to the vector from P;_; to P11 by the equation
, 1
P = 5(1 —t)(Piy1 — Pic1) (19.14)

See Figure 19.6.

P Pi,= Z(1=1)P, = P_)

Figure 19.6: The tangent vector at an internal control point of a cardinal spline is parallel to the
vector joining the adjacent control points — the tension parameter t; is user-specified.

The constant of proportionality 4(1 —¢;) in (19.14) involves a designer-specified
parameter t;, called the tension parameter. The tension parameter is usually set
between —1 and 1 at each internal control point, in turn setting (1 — (;) between 1
and 0. If the tension parameter is set to 0 at every internal control point, one gets a

popularly used special kind of cardinal spline called a Catmull-Rom spline. Specifically,

the tangent vector at the internal control point P; of a Catmull-Rom spline is

P = %(P,-H —P,_1) (19.15)

Now, from (19.14), 1 < i < n — 1, one has only n — 1 equations in the n + 1

unknowns P/, 0 < i < n. Therefore, two more are required to uniquely solve for these

unknowns and determine the cardinal spline through P;, 0 < i < n. Typically, as

in the case of a natural cubic spline, these are obtained from requiring the second
derivatives to vanish at the two end control points.

Eixercise 19.7. Write a matrix equation analogous to (19.13) relating P/ to P; for a
cardinal spline, assuming the additional constraints that the second derivatives vanish
at the terminal control points. Is the coefficient matrix tridiagonal?

Exercise 19.8. What can you say of local control in cardinal splines? In other
words, which of the cubic arcs of a cardinal spline are affected by moving a specific
control point?

Eixercise 19.9. Natural cubic splines are C2 by definition. How about cardinal
splines — are they C??

Hint: The answer is no in general and we ask the reader to try and come up with
a counter-example. A Catmull-Rom spline through three control points which loses
C2-continuity in the middle is probably easiest.

19.4 Hermite Surface Patches

We'll give a brief introduction to the 2D version of Hermite curves, namely, Hermite
surfaces. Analogously to (19.1), one can write the parametric equation of a Hermite
surface patch (or bicubic surface patch) in algebraic form as

3 3
s(u,v) = ZZAi,ju"vj

i=0 j=0
= Az3uPvd + Azpudv? 4+ Azq vl + Az ud
+ A3 u?o® + Az o u?v? + Az w?v + Az u?
+A13 w® + Aia w? + Aqjuw+ Apu
+ Aoz 0% + Ag2v? + Ao 1 v+ Ago (19.16)

for 0 < u,v < 1. The expression after the second equality consists of 16 monomial
summands, where A4;;, 0 <7 < 3,0 < j < 3, are points in the ambient space.

Section 19.4

HERMITE SURFACE

PATCHES

597

598

Chapter 19
HERMITE

Going back to curves for a moment, observe that the geometric form (19.10), viz.,
c(u) = Ho(u) P+ Hy(u) Q + Ha(u) P! + Hz(u) Q'
of the equation of a Hermite cubic is more useful than the algebraic (19.1), viz.,
c(u) = Asu® + Ayu® + Aju+ A

because it gives an equation in terms of perceptible boundary constraints, in particular,
the endpoints P and @ and the tangent vectors P’ and Q' there. Moreover, we were
able to derive the algebraic form from the geometric because these four boundary
constraints were sufficient to uniquely recover the four coefficients A;, 0 < i < 3, of
the algebraic form.

So what would be a suitable set of boundary constraints for a geometric form of
the equation of a Hermite patch? Clearly, one would want sixteen constraints leading
to a unique determination of the sixteen coefficients A;;, 0 <4 <3, 0 < 5 < 3, on the
RHS of (19.16).

Figure 19.7: Twelve boundary constraints on a bicubic patch.

Twelve choices are fairly clear. See Figure 19.7. Firstly, the four corners
5(0,0),5(1,0),s(1,1),s(0,1) of the patch s evidently evidently coincide with user-
specified control points P,), R and S, respectively. Next, analogous to asking for end
tangent vectors in the case of a curve, the values of the partial derivatives with respect
to u and v at each corner provide eight more constraints. Observe that the two partial
derivatives at each corner are nothing but the tangent vectors to the two boundary
curves meeting there. Four remaining boundary constraints are up to the designer,
but are usually taken to be values of the second-order mixed partial derivatives at the
corners, namely,

s 9?s 0%s 9?s 11

Guﬁv(,0), 8uav(0, Gu(%(1) Buav(1)
These four are called twist vectors and have geometric significance too — though not
as straightforwardly as the first twelve — which we’ll not go into here.

We'll conclude our discussion by saying that it turns out that, indeed, the four
corner position vectors, the eight tangent vectors at the corners and the four twist
vectors together provide sixteen boundary constraints which are sufficient to uniquely
specify a Hermite patch. We’ll not go further into the derivation ourselves, but refer

the interested reader to the chapter on Hermite surfaces in the book by Mortenson
[97].

Lagrange Interpolation

At the conclusion of this chapter, we’ll briefly describe a method of polynomial (in
fact, entirely polynomial, not piecewise like Hermite) interpolation, called Lagrange
interpolation, actually of more theoretical interest than practical value in design.

The Lagrange polynomial f; ., where n is a positive integer and ¢ is an integer
between 0 and n, is defined by the equation

N |

—
0<j<n, j#i)

For example,

f2,a(u)

—0)(u—1D(u—3)(u—4)
—0)2-1)(2-3)(2-4)

(u
@
_ iu(u —1)(u — 3)(u — 4)

Lagrange polynomials have the easily verified property that

1, u=1
fzwn(“):{ 0, we{01,...,n}, usti

In other words, on the particular set of integers {0,1,...,n}, the Lagrange polynomial
fin is 1 at exactly one point, namely 4, and 0, elsewhere.

Exercise 19.10. Write the formula for fo,a(u) and check it for the above-mentioned
property.

If, now, one uses the Lagrange polynomials as blending functions for n + 1 control
points P;, 0 < i < n, obtaining the curve

c(u) = fon(wW)Po+ fin(W)Pr+ ...+ fan(@P, (0<u<n)

then ¢, called a Lagrange curve, is a polynomial curve of degree n. It’s seen easily
from its definition that ¢ interpolates all its control points; in particular, ¢ is equal to
P; at the point ¢ of the parameter domain [0, n], for 0 < i < n.

Eixercise 19.11. Write the formula for the Lagrange curve interpolating the four
control points

O —-137 [12-3% [-14T [2087

Lagrange interpolation is rarely used in practice because it suffers
from the Bézier-like problem that the degree of the interpolating curve grows with its
number of control points. It lacks local control as well.

19.5 Summary, Notes and More Reading

After a couple of chapters on Bézier and B-spline approximation of control points, we
learned in this chapter practical methods to interpolate. These will come in handy
in design applications that do require interpolation and most 3D modelers, in fact,
offer at least a flavor or two of Hermite interpolation, such as natural cubic and
Catmull-Rom splines. It’s true, though, in the majority of real-life applications that
the only known hard constraints on a curve or surface are at its boundary, e.g., by
the way a surface patch meets its neighbors, so the designer typically prefers using
internal control points as attractors a la Bézier or B-spline, rather than having them
tightly latched to an interpolating curve or surface.

For more about Hermite interpolation the reader should consult Farin [45] and
Mortenson [97].

Section 19.5
SUMMARY, NOTES AND
MORE READING

599

