“cgBook” — 2022/6/6 — 22:06 — page 19 — #45

CHAPTER

On to OpenGL and 3D Computer
Graphics

our journey into computer graphics using OpenGL as the API (Application

Programming Interface) of choice. We shall apply an experiment-discuss-
repeat approach where we run code and ask questions of what is seen, acquiring
thereby an understanding not only of the way the API functions, but underlying CG
concepts as well. Particularly, we want to gain insight into:

T he primary goal for this chapter is to be acquainted with OpenGL and begin

(a) The synthetic-camera model to record 3D scenes, which OpenGL implements.

(b) The approach of approximating curved objects, such as circles and spheres, with
the help of straight and flat geometric primitives, such as line segments and
triangles, which is fundamental to object design in computer graphics.

We begin in Section 2.1 with our first OpenGL program to draw a square, the
computer graphics equivalent of “Hello World”. Simple though it is, with a few careful
experiments and their analysis, square.cpp yields a surprising amount of information
through Sections 2.1-2.3 about orthographic projection, the fixed world coordinate
system OpenGL sets up and how the so-called viewing box in which the programmer
draws is specified in this system. We gain insight as well into the 3D-to-2D rendering
process.

Adding code to square.cpp we see in Section 2.4 how parts of objects outside the
viewing box are clipped off. Section 2.5 discusses OpenGL as a state machine. We
have in this section as well our first glimpse of property values, such as color, initially
specified at the vertices of a primitive, being interpolated throughout its interior.

Next is the very important Section 2.6 where all the drawing primitives of OpenGL
are introduced. These are the parts at the application programmer’s disposal with
which to assemble objects from thumbtacks to spacecrafts.

The first use of straight primitives to approximate a curved object comes in
Section 2.7: a curve (a circle) is drawn using straight line segments. To create
more interesting and complex objects one must invoke OpenGL’s famous three-
dimensionality. This means learning first in Section 2.8 about perspective projection
as also hidden surface removal using the depth buffer.

After a bunch of drawing exercises in Section 2.9 for the reader to practice her
newly-acquired skills, the topic of approximating curved objects is broached again in
Section 2.10, this time to approximate a surface with triangles, rather than a curve
with straight segments as in Section 2.7. Section 2.11 is a review of all the syntax that
goes into making a complete OpenGL program.

19

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

Figure 2.1: Screenshot
of square.cpp, in
particular, the OpenGL
window.

Figure 2.2: OpenGL
window of square.cpp
(bluish green pretending
to be white).

(0,0)

V=

%
(20,20,0,

(80,20,0)

yv

Figure 2.3: The
coordinate axes on the
OpenGL window of
square.cpp? No.

20

“cgBook” — 2022/6/6 — 22:06 — page 20 — #46

We conclude with a summary, brief notes and suggestions for further reading in
Section 2.12.

2.1 First Program

ExpeI'iment 2.1. Run square.cpp.

Note: Visit the book’s website www.sumantaguha.com to download all of the book’s
code in the folder ExperimenterSource, as well as a guide to how to install OpenGL
and run the programs. Available for download too is Experimenter.pdf which lists
the programs in their book order and conveniently allows the user to click to open
each.

In the OpenGL window appears a black square over a white background. Figure 2.1
is an actual screenshot, but we’ll draw it as in Figure 2.2, bluish green standing in for
white in order to distinguish it from the paper. We are going to understand next how
the square is drawn, and gain some insight as well into the workings behind the scene.

End

The following six statements in square.cpp create the square:

glBegin (GL_POLYGON) ;
glVertex3£(20.0, 20.0, 0.0);
glVertex3£(80.0, 20.0, 0.0);
glVertex3£(80.0, 80.0, 0.0);
glVertex3£(20.0, 80.0, 0.0);
glEnd();

Important! If, from what you may have read elsewhere, you have the
notion that glBegin()-glEnd(), and even GL_POLYGON, specifications are classical
and don’t belong in the newest version of OpenGL, then you are right insofar as
they are not in the core profile of the latter. They are, though, accessible via the
compatibility profile which allows for backward compatibility. Moreover, we explain
carefully in the book’s preface why we don’t subscribe to the toss-everything-classical
school of thought as far as teaching OpenGL is concerned. Of course, we shall cover
thoroughly the most modern — in fact, fourth generation — OpenGL later in the book.
If you have not done so yet, we strongly urge you to read about our pedagogical
approach in the preface in order to be comfortable with what follows.

The corners of the square evidently are specified by the four vertex declaration
statements between glBegin (GL_POLYGON) and glEnd (). Let’s determine how exactly
these glVertex3f () statements correspond to the corners.

If, suppose, the vertices are specified in some coordinate system that is embedded
in the OpenGL window — which certainly is plausible — and if we knew the axes
of this system, the matter would be simple. For example, if the x-axis increased
horizontally rightwards and the y-axis vertically downwards, as in Figure 2.3, then
glVertex3f(20.0, 20.0, 0.0) would correspond to the upper-left corner of the
square, glVertex3£(80.0, 20.0, 0.0) to the upper-right corner, and so on.

However, even assuming that there do exist these invisible axes attached to the
OpenGL window, how do we tell where they are or how they are oriented? One
way is to “wiggle” the corners of the square! For example, change the first vertex
declaration from glVertex3f (20.0, 20.0, 0.0) to glVertex3£f(30.0, 20.0, 0.0)
and observe which corner moves. Having determined in this way the correspondence
of the corners with the vertex statements, we ask the reader to deduce the orientation
of the hypothetical coordinate axes. Decide where the origin is located too.

Well, it seems then that square. cpp sets up coordinates in the OpenGL window so
that the increasing direction of the z-axis is horizontally rightwards, that of the y-axis
vertically upwards and, moreover, the origin seems to correspond to the lower-left

“cgBook” — 2022/6/6 — 22:06 — page 21 — #47

corner of the window, as in Figure 2.4. We’re making progress but there’s more to
the story, so read on.

The last of the three parameters of a glVertex3f (*, *, *) declaration is evidently
the z coordinate. Vertices are specified in 3-dimensional space (simply called 3-space
or, mathematically, R%). Indeed, OpenGL allows us to draw in 3-space and create truly
3D scenes, which is its major claim to fame. However, we perceive the 3-dimensional
scene as a picture rendered to a 2-dimensional part of the computer’s screen, in
particular, the rectangular OpenGL window. We’ll soon see how OpenGL converts a
3D scene to its 2D rendering.

2.2 Orthographic Projection, Viewing Box and
World Coordinates

What exactly do the vertex coordinate values mean? For example, is the vertex at
(20.0, 20.0, 0.0) of square.cpp 20 mm., 20 cm. or 20 pixels away from the origin along
both the z-axis and y-axis, or is there some other absolute unit of distance native to
OpenGL? Let’s do the following experiment.”

Experiment 2.2. The main routine’s glutInitWindowSize() parameter values
determine the shape of the OpenGL window; in fact, generally, glutInitWindow-
Size(w, h) creates a window w pixels wide and h pixels high.

Change square.cpp’s initial glutInitWindowSize (500, 500) to glutInit-
WindowSize (300, 300) and then glutInitWindowSize(500, 250) (Figure 2.5).
The drawn square changes in size, and even shape, with the OpenGL window.
Therefore, its code coordinate values appear not to mean any kind of absolute screen
units. End

Of course, you could have reshaped the OpenGL window directly by drag-
ging one of its corners with the mouse, rather than resetting glutInitWindowSize ()
in the program.

VA

(lefi, top, —far (right, top, —far)

(left, top, —near)

right, top, —near)

" 4

(left, bottom, |=far)
/

(right, bottom, —far)

(left, bottom, —near) right, bottom, —near)

Figure 2.6: Viewing box defined by glOrtho (left, right, bottom, top, mear, far) sitting in world
space whose zyz coordinate axes are drawn.

Understanding what the coordinates actually represent involves understanding first
OpenGL’s rendering mechanism, which itself begins with the program’s projection
statement. In the case of square.cpp this statement is

glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0)

in the resize() routine, which determines an imaginary (or, virtual, if you like)
viewing boz inside which the programmer draws scenes.
Generally,

“Experiments are an integral part of our teaching method so we urge you to run them as you read.
The file Ezperimenter.pdf at the book’s website makes this easy by allowing you to open the project
file for successive experiments with a single click each. However, even if you don’t run an experiment,
make sure always to read its discussion in the text.

Section 2.2
ORTHOGRAPHIC
PROJECTION, VIEWING
Box AND WORLD
COORDINATES

YA

(80,20,0)

(20,2&{1
Ve

(0,0) x

Figure 2.4: The
coordinate axes on the
OpenGL window of
square.cpp? Well, pretty
much, but there’s a bit
more to it.

Figure 2.5: Screenshot
of square.cpp with
window size 500 x 250.

21

Chapter 2

ON TO OPENGL AND

3D COMPUTER
GRAPHICS

22

“cgBook” — 2022/6/6 — 22:06 — page 22 — #48

glOrtho (left, right, bottom, top, mear, far)
sets up a viewing box, as in Figure 2.6, with corners at the 8 points:

(left, bottom, —mnear), (right, bottom, —mnear), (left, top, —mnear),
(right, top, —mnear), (left, bottom, —far), (right, bottom, —far),
(left, top, —far), (right, top, —far)

It’s a box with sides aligned along the axes, whose span along the x-axis is from
left to right, along the y-axis from bottom to top, and along the z-axis from —near
to —far. Note the little quirk of OpenGL that the near and far values are flipped
in sign. The viewing box corresponding to the projection statement glOrtho (0.0,
100.0, 0.0, 100.0, -1.0, 1.0) of square.cpp is shown in Figure 2.7(a).

ya (0,100, —1) (100, 100, -1) ya
(0, 100, 1)
1004100, 1) 45%0 80, 0)
(0,0,-1) (100, 0,-1) (20,20 20, 0)
»x » x
0,0, 1) 00,0, 1)
Z Z
(a) (b)

Figure 2.7: (a) Viewing box of square.cpp (b) With the square drawn inside.

The viewing box itself is located in a 3D space, also virtual, called world space, by
means of the coordinate system of that space (Figure 2.6 shows the coordinate axes of
world space). The reader uncomfortable with all of this “virtuality” is welcome to
make matters real by taking world space to be the room she is in with coordinate
axes, say, meeting somewhere in the middle.

How then are the coordinate axes of world space calibrated, for the size of the
viewing box depends on this? E.g., is a unit along an axis one inch, one centimeter or
something else? The answer will be evident once the rendering process is explained
momentarily but, again for the sake of concreteness, the reader can for now fix a unit
to be an inch. So, the picture of a “real” (say, glass) viewing box right—left inches
wide, top—bottom inches high and far—near inches deep located in a room is perfectly
good.

As for drawing now, the vertex declaration glVertex3f(x, y, z) corresponds
to the point (z,y, #) in world space. For example, the corner of the square declared
by glVertex3£(20.0, 20.0, 0.0) is at (20.0, 20.0, 0.0). The square of square.cpp
then, as depicted in Figure 2.7(b), is located entirely inside the viewing box.

Once the programmer has drawn the entire scene, if the projection statement is
glOrtho() as in square.cpp, then the rendering process is two-step:

1. Shoot: First, objects are projected perpendicularly onto the front face of the
viewing box, i.e., the face on the z = —near plane. For example, the square in
Figure 2.8(a) (same as Figure 2.7(b)) is projected as in Figure 2.8(b). The front
face of the viewing box is called the viewing face and the plane on which it lies
the viewing plane. This step is like shooting the scene on film.

2. Print: Next, the viewing face is proportionately scaled to fit the rectangular
OpenGL window. This step is like printing film on paper. In the case of
square. cpp, printing takes us from Figure 2.8(b) to (c).

If, say, the window size of square.cpp were changed to one of aspect
ratio (= width/height) of 2, by replacing glutInitWindowSize (500, 500)

“cgBook” — 2022/6/6 — 22:06 — page 23 — #49

VA o VA Section 2.2
Viewing face ORTHOGRAPHIC
(70, 80. 0) 80, 0) EROJECTIC\)i\Iv, VIEWING
0X AND WORLD
(20, 80, 1) COORDINATES

(20, 20, 0) L
) (80420, 1) x
Z (b)
print
500 pixels ,/ - \‘ 500 pixels
P E
7
= 2
= N .
4 OpenGL Window
OpenGL Window
Computer Screen Computer Screen
(©) (d)

Figure 2.8: Rendering with glOrtho().

with glutInitWindowSize (500, 250), printing would take us from Fig-
ure 2.8(b) to (d) (which actually distorts the square into a rectangle).

The answer to the earlier question of how to calibrate the coordinate axes of world
space should be clear now: it does not matter! For, the 2D rendering finally displayed
is the same no matter how the axes are calibrated, because of the proportionate scaling
of the viewing face of the box to match the OpenGL window. And, of course, this is
why OpenGL never prompts us for information about our world space and how it’s
coordinatized — it doesn’t need to for it to do its job. Here’s a partly-solved exercise
to drive home the point.

Exercise 2.1.

(a) Suppose the viewing box of square.cpp is set up in a world space where one
unit along each axis is 1 cm. Assuming pixels to be 0.2 mm. x 0.2 mm. squares,
compute the size and location of the square rendered by shoot-and-print to a
500 pixel x 500 pixel OpenGL window.

(b) Suppose next that the coordinate system of the world space is re-calibrated so
that a unit along each axis is 1 meter instead of 1 cm., everything else remaining
same. What then are the size and location of the rendered square in the OpenGL
window?

(¢) What is rendered if, additionally, the size of the OpenGL window is changed to
500 pixel x 250 pixel?

Part answer:

(a) Figure 2.9 on the left shows the square projected to the viewing face, which
is 100 cm. square. The viewing face is then scaled to the OpenGL window on
the right, which is a square of sides 500 pixels = 500 x 0.2 mm. = 100 mm.
Scaling from face to the window, therefore, is a factor of 1/10 in both dimensions. 23

Chapter 2
ON TO OPENGL AND
3D COMPUTER

GRAPHICS
Vi

0] X

(@)
‘ 5,
X O

z

(b)

Figure 2.10: The z-, y-
and z-axes are rectangular
and form (a) a right-
handed system (b) a
left-handed system.

24

“cgBook” — 2022/6/6 — 22:06 — page 24 — #350

print

:

(=3
O

20mm|

1 60 mm.
=)

100 mm. >

100 cm.

(Sl

100 mm. (= 500 pixels)

100 cm.
Viewing Face OpenGL Window

Figure 2.9: The viewing face for square.cpp, given that one unit along each coordinate axis is 1
cm., scaled to a 500 pixel x 500 pixel OpenGL window.

It follows that the rendered square is 60 mm. X 60 mm., with its lower-left
corner located both 20 mm. above and to the right of the lower-left corner of
the window.

(b) Exactly the same as in part (a) because, while the viewing box and viewing face
are now 100 times larger in both the x and y dimensions, the scaling from face
to window is now a factor of 1/1000, rather than 1/10.

We conclude that the size and location of the rendering in each coordinate direction
are independent of how the axes are calibrated, but determined rather by the ratio of
the original object’s size to that of the viewing box in that direction.

Although the calibration of the world space axes doesn’t matter, nevertheless, we’ll
make the sensible assumption that all three are calibrated identically, i.e., one unit
along each axis is of equal length (yes, oddly enough, we could make them different
and still the rendering would not change, which you can verify yourself by re-doing
Exercise 2.1(a), after assuming that one unit along the z-axis is 1 cm. and along the
other two 1 meter). The only other assumptions about the initial coordinate system
which we make are conventional ones:

a) It is rectangular, i.e., the three axes are mutually perpendicular.
g y

(b) The z-, y- and z-axes in that order form a right-handed system in the following
sense: a rotation of the x-axis 90° about the origin so that its positive direction
matches with that of the y-axis appears counter-clockwise to a viewer located
on the positive side of the z-axis (Figure 2.10).

Fixed World System

To summarize, set up an initial rectangular right-handed coordinate system with axes
all calibrated identically. Call a unit along each axis just “a unit” as we know it
doesn’t matter what exactly this unit is. Imagine the system located wherever you
like — on top of your desk maybe — and then leave it fixed.

See Figure 2.11 — it actually helps to imagine this system of axes as real and fixed
forever. The system coordinatizes world space and, in fact, we shall refer to it as the
world coordinate system. All objects, including the viewing box and those that we
create ourselves, inhabit world space and are specified in world coordinates. These
are all virtual objects, of course.

Even though the world coordinate system can be located wherever you
like, it is most often helpful to imagine the z-axis running rightward along the bottom
of your monitor, the y-axis climbing up the left side, and the z-axis coming at you.

Because it’s occupied by user-defined objects, world space is sometimes
called object space.

“cgBook” — 2022/6/6 — 22:06 — page 25 — #51

Figure 2.11: A dedicated 3D graphics programmer in a world all her own.

Incidentally, it’s clear now that our working hypothesis after the first experiment
in Section 2.1, that the OpenGL window comes with axes fixed to it, though not
unreasonable, was not entirely accurate. The OpenGL window it turns out is simply
an empty target rectangle on which the front face of the viewing box is printed. This
rectangle is called screen space.

So, there are two spaces we’ll be working with: world and screen. The former is
a virtual 3D space in which we create our scenes, while the latter is a real 2D space
where scenes are rendered in a shoot-and-print process.

Eixperiment 2.3. Change only the viewing box of square.cpp by replacing
glO0rtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0) with glOrtho(-100, 100.0,

-100.0, 100.0, -1.0, 1.0). The location of the square in the new viewing box is
different and, so as well, the result of shoot-and-print. Figure 2.12 is a screenshot and
Figure 2.13 explains how. Ena

VA
(-100, 100, —1) (100, 100, 1)
(20, 80, 0) 80, 0)
(-100, 100, 1) 100, 1) .
ofe 20, 0)
print =
100, -100, 1 100, -100, —1
(’ > /)/ (100, ? OpenGL Window
/
(=100, 100, 1 100, -100, 1) Computer Screen
Z

Figure 2.13: The viewing box of square.cpp defined by glOrtho(-100, 100.0, -100.0, 100.0,
-1.0, 1.0).

Eixercise 2.2. (Programming) Change the viewing box of square.cpp by
replacing glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0) successively with the
following, in each case trying to predict the output before running;:

(a) gl0rtho(0.0, 200.0, 0.0, 200.0, -1.0, 1.0)
(b) glOrtho(20.0, 80.0, 20.0, 80.0, -1.0, 1.0)

(c) gl0rtho(0.0, 100.0, 0.0, 100.0, -2.0, 5.0)

Section 2.2
ORTHOGRAPHIC
PROJECTION, VIEWING
Box AND WORLD
COORDINATES

Figure 2.12: Screenshot
of square.cpp with
gl0rtho(-100, 100.0,
-100.0, 100.0, -1.0,
1.0).

25

“cgBook” — 2022/6/6 — 22:06 — page 26 — #52

Chapter 2 Exercise 2.3. Ifthe viewing box of square. cpp is changed by replacing gl0rtho (0.0,
ON TO OPENGL anp 100.0, 0.0, 100.0, -1.0, 1.0) with glOrtho(-100.0, 100.0, -100.0, 100.0,
3D Compurer —1.0, 1.0),and the OpenGL window size changed replacing glutInitWindowSize (500,
Graphics 500) with glutInitWindowSize (500, 250), then calculate the area (in number of
pizels) of the image of the square.

Exercise 2.4. (Programming) We saw earlier that, as a result of the print step,
replacing glutInitWindowSize (5600, 500) with glutInitWindowSize (500, 250) in
square.cpp causes the square to be distorted into a rectangle. By changing only one
numerical parameter elsewhere in the program, eliminate the distortion to make it
appear square again.

Exercise 2.5. (Programming) Alter the z coordinates of each vertex of the
“square” — we should really call it a polygon if we do this — of square.cpp as follows:

glBegin (GL_POLYGON) ;
glVertex3£(20.0, 20.0, 0.5);
glVertex3£(80.0, 20.0, -0.5);
glVertex3£(80.0, 80.0, 0.1);
glVertex3£(20.0, 80.0, 0.2);
glEnd();

The rendering does not change. Why?

Always set the parameters of glOrtho (left, right, bottom, top, near,
far) so that left < right, bottom < top, and near < far. However, we’ll revisit this
edict in Problem 2.11.

The aspect ratio (= width/height) of the viewing box should be set
same as that of the OpenGL window or the scene will be distorted by the print step.

The perpendicular projection onto the viewing plane corresponding to a
gl0rtho () call is also called orthographic projection or orthogonal projection (hence
the name of the call). Yet another term is parallel projection as the lines of projection
from points in the viewing box to the viewing plane are all parallel.

2.3 The OpenGL Window and Screen Coordinates

We've already had occasion to use the glutInitWindowSize(w, h) command which
sets the size of the OpenGL window to width w and height h measured in pixels.
A companion command is glutInitWindowPosition(x, y) to specify the location
(z,y) of the upper-left corner of the OpenGL window on the computer screen.

Experiment 2.4. Change the parameters of glutInitWindowPosition(z, y) in
square.cpp from the current (100, 100) to a few different values to determine the
location of the origin (0, 0) of the computer screen, as well as the orientation of the
screen’s own x-axis and y-axis. End

The origin (0,0) of the screen it turns out is at its upper-left corner, while the
increasing direction of its z-axis is horizontally rightwards and that of its y-axis
vertically downwards; moreover, one unit along either axis is absolute and represents
a pixel. See Figure 2.14, which shows as well the coordinates of the corners of the
OpenGL window as initialized by square.cpp.

Note the inconsistency between the orientation of the screen’s y-axis and the y-axis
of the world coordinate system, the latter being directed up the OpenGL window (after
being projected there). One needs to take this into account when reading data from
the screen and using it in world space, or vice versa. We'll see this when programming

26 the mouse in the next chapter.

“cgBook” — 2022/6/6 — 22:06 — page 27 — #353 ?

ixels .
0,0) pixe Section 2.4
(2} 0[1]2] - % CLIPPING

2 |1 (100, 100) (600, 100)

‘a2l

OpenGL
V&Pindow

(100, 600) (600, 600)

vy Computer Screen

Figure 2.14: The screen’s coordinate system: a unit along either axis is the pitch of a pixel.
2.4 Clipping

A question may have come to the reader’s mind about objects which happen to be
drawn outside the viewing box. Here are a few experiments to clarify how they are
processed.

Esxperiment 2.5. Add another square by inserting the following right after the code
for the original square in square.cpp:

glBegin (GL_POLYGON) ;
glVertex3£(120.0, 120.0, 0.0)
glVertex3£(180.0, 120.0, 0.0);
glVertex3£(180.0, 180.0, 0.0)
glVertex3f(120.0, 180.0, 0.0)
glEnd();

From the value of its vertex coordinates the second square evidently lies entirely
outside the viewing box.

If you run now there’s no sign of the second square in the OpenGL window. This
is because OpenGL clips the scene to within the viewing box before rendering, so
that objects or parts of objects drawn outside are not seen. Clipping is a stage in the
graphics pipeline. We’ll not worry about its implementation at this time, only the
effect. End

Exercise 2.6. (Programming) In the preceding experiment can you redefine
the viewing box by changing the parameters of glOrtho() so that both squares are
visible?

ExpeI‘iment 2.6. For a more dramatic illustration of clipping, first replace the square
of the original square.cpp with a triangle by deleting its last vertex; in particular, Figure 2.15: Screenshot
replace the polygon code with the following;: of a triangle.

glBegin (GL_POLYGON) ;
glVertex3£(20.0, 20.0, 0.0);
glVertex3£(80.0, 20.0, 0.0);
glVertex3£(80.0, 80.0, 0.0);
glEnd();

See Figure 2.15. Next, lift the first vertex up the z-axis by changing it to
glVertex3£f(20.0, 20.0, 0.5); lift it further by changing its z-value to 1.5 when
Figure 2.16 is a screenshot, then 2.5 and, finally, 10.0. Make sure you believe that
what you see in the last three cases is indeed a triangle clipped to within the viewing

box — Figure 2.17 may be helpful. End Figure 2.16: Screenshot
of the triangle clipped to
The viewing box has six faces that each lie on a different plane and, effectively, a quadrilateral.

OpenGL clips the scene off on one side of each of these six planes, accordingly called 27

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

Figure 2.18: Screenshot
of the first vertex of
square. cpp raised.

Figure 2.19: Screenshot
of the second vertex of
square. cpp raised.

Figure 2.20: A triangle
fan.

28

“cgBook” — 2022/6/6 — 22:06 — page 28 — #b54

x = left
T~

x = right

z =—near y = bottom

Figure 2.17: Six clipping planes of the glOrtho (left, right, bottom, top, near, far) viewing box
and a “clipping knife”.

clipping planes. One might imagine a knife slicing down each plane as in Figure 2.17.
Specifically, in the case of the viewing box set up by glOrtho (left, right, bottom,
top, near, far), clipped off is to the left of the plane x = left, to the right of the
plane = right, and so on.

As we shall see in Chapter 3, the programmer can define clipping planes
in addition to the six that bound the viewing box.

xerciS€ 2.7. Use pencil and paper to guess the output if the polygon declaration
Exercise 2.7. U il and t the output if the polygon declarati
part of square. cpp is replaced with the following:

glBegin (GL_POLYGON) ;
glVertex3f(-20.0, -20.0, 0.0);
glVertex3£(80.0, 20.0, 0.0);
glVertex3£(120.0, 120.0, 0.0);
glVertex3£(20.0, 80.0, 0.0);
glEnd();

Exercise 2.8. (Programming) Here’s a bit of a “mathy” question. A triangle
was clipped to a (4-sided) quadrilateral in the earlier experiment. Can you come up
with a triangle which gets clipped to within the viewing box to a figure with more
than 4 sides? What’s the maximum number of sides you can make happen?

We'll leave this section with a rather curious phenomenon for the reader to resolve.

Exercise 2.9. (Programming) Raising the first vertex of (the original)
square.cpp from glVertex3f (20.0, 20.0, 0.0) to glVertex3f(20.0, 20.0, 1.5)
causes it to be clipped — see Figure 2.18.

If, instead, the second vertex is raised from glVertex3f(80.0, 20.0, 0.0) to
glVertex3f(80.0, 20.0, 1.5), then the figure is clipped too, but very differently —
see Figure 2.19. Why? Should not the results be similar by symmetry?

Hint: OpenGL draws a polygon after triangulating it as a so-called triangle fan with
the first vertex of the polygon, in code order, the center of the fan. For example, the
fan in Figure 2.20 consists of five triangles around vertex vp.

2.5 Color, OpenGL State Machine and
Interpolation

Eixperiment 2.7. The color of the square in square. cpp is specified by the three
parameters of the glColor3£(0.0, 0.0, 0.0) statement in the drawScene () routine,

“cgBook” — 2022/6/6 — 22:06 — page 29 — #355

each of which gives the value of one of the three primary components, blue, green and Section 2.5

red. CoLOR, OPENGL
Determine which of the three parameters of glColor3f () specifies the blue, green Srtare Macuing AND

and red components by setting in turn each to 1.0 and the others to 0.0 (e.g., INTERPOLATION

Figure 2.21 shows one case). In fact, further verify the following table for every

possible combination of the values 0.0 and 1.0 for the primary components.

Call Color
glColor3£f (0.0, 0.0, 0.0) Black
glColor3f (1.0, 0.0, 0.0) Red
glColor3£(0.0, 1.0, 0.0) Green
glColor3£ (0.0, 0.0, 1.0) Blue
glColor3f(1.0, 1.0, 0.0) Yellow
glColor3£f(1.0, 0.0, 1.0) | Magenta
glColor3£ (0.0, 1.0, 1.0) Cyan
glColor3£f(1.0, 1.0, 1.0) White

Figure 2.21: Screenshot
End of square.cpp with
glColor3£f (1.0, 0.0,
Generally, the glColor3f (red, green, blue) call specifies the foreground color, 0.0).

or drawing color, which is the color applied to objects being drawn. The value of
each color component, which ought to be a number between 0.0 and 1.0, determines
its intensity. For example, glColor3f(1.0, 1.0, 0.0) is the brightest yellow while
glColor3£f (0.5, 0.5, 0.0) is a weaker yellow.

The color values are each clamped to the range [0,1]. This means that,
if a value happens to be set greater than 1, then it’s taken to be 1; if less than 0, it’s
taken to be 0.

Exercise 2.10. (Programming) Both glColor3f(0.2, 0.2, 0.2) and
glColor3£(0.8, 0.8, 0.8) should be grays, having equal RGB intensities. Guess
which is the darker of the two. Verify by changing the foreground color of square. cpp.

The call glClearColor(1.0, 1.0, 1.0, 0.0) in the setup() routine specifies
the background color, or clearing color. Ignore for now the fourth parameter, which
is the alpha value. The statement glClear (GL_COLOR_BUFFER_BIT) in drawScene ()
actually clears the window to the specified background color, which means that every
pixel in the color buffer is set to that color.

Eixperiment 2.8. Add the additional color declaration statement glColor3£f (1.0,
0.0, 0.0) just after the existing one glColor3£(0.0, 0.0, 0.0) in the drawing
routine of square.cpp so that the foreground color block becomes

glColor3£(0.0, 0.0, 0.0);
glColor3£ (1.0, 0.0, 0.0);

The square is drawn red like the one in Figure 2.21 because the current value or state
of the foreground color is red when each of its vertices is specified. End

Foreground color is one of a collection of variables, called state variables, which
determine the state of OpenGL. Among other state variables are point size, line width,
line stipple, material properties, etc. We’ll meet several as we go along or you can
refer to the red book* for a full list. OpenGL remains and functions in its current
state until a declaration is made changing a state variable. For this reason, OpenGL
is often called a state machine. The next couple of experiments illustrate important
points about how state variables control rendering.

*The OpenGL Programming Guide [109] and its companion volume, the OpenGL Reference
Manual [110], are the canonical references for the OpenGL API and affectionately referred to as
the red book and blue book, respectively. Note that the on-line reference docs at www.khronos.org
pretty much cover all that is in the blue book. 29

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

Figure 2.22: Screenshot
of a green square drawn
after (in the code) a red
square.

Figure 2.23: Screenshot
of a square with
differently colored
vertices.

30

“cgBook” — 2022/6/6 — 22:06 — page 30 — #56

Experiment 2.9. Replace the polygon declaration part of square.cpp with the
following to draw two squares:

glColor3£f(1.0, 0.0, 0.0);
glBegin (GL_POLYGON) ;

glVertex3£(20.0, 20.0, 0.0);
glVertex3£(80.0, 20.0, 0.0);
glVertex3£(80.0, 80.0, 0.0);
glVertex3£(20.0, 80.0, 0.0);

glEnd();

glColor3£ (0.0, 1.0, 0.0);

glBegin (GL_POLYGON) ;
glVertex3f(40.0, 40.0, 0.0);
glVertex3£(60.0, 40.0, 0.0);
glVertex3£(60.0, 60.0, 0.0);
glVertex3£(40.0, 60.0, 0.0);

glEnd();

A small green square appears inside a larger red one (Figure 2.22). Obviously, this
is because the foreground color is red for the first square, but green for the second.
One says that the color red binds to the first square — or, more precisely, to each of
its four vertices — and green to the second square. These bound values specify the
color attribute of either square. Generally, the values of those state variables which
determine how it is rendered collectively form a primitive’s attribute set.

Flip the order in which the two squares appear in the code by cutting the seven
statements which specify the red square and pasting them after those to do with the
green one. The green square is overwritten by the red one and no longer visible. This
is because at the end of the day an OpenGL program is still a C++ program which
processes code line-by-line, so objects are drawn in their code order. End

Experiment 2.10. Replace the polygon declaration part of square.cpp with:

glBegin (GL_POLYGON) ;
glColor3£ (1.0, 0.0,
glVertex3£(20.0, 20.0,
glColor3£(0.0, 1.0,
glVertex3£(80.0, 20.0,
glColor3£ (0.0, 0.0,
glVertex3£(80.0, 80.0, 0.0);
glColor3£ (1.0, 1.0,
glVertex3£(20.0, 80.0, 0.0);

glEnd();

The different color values bound to the four vertices of the square are evidently
interpolated over the rest of the square as you can see in Figure 2.23. In fact, this is
most often the case with OpenGL: numerical attribute values specified at the vertices
of a primitive are interpolated throughout its interior. In a later chapter we’ll see
exactly what it means to interpolate and how OpenGL goes about the task. End

Now that we have a square, as in Figure 2.23, which is not symmetric left to
right or bottom to top, let’s see what happens if we mess with what we were told in
Remark 2.5, which was to set always the parameters of glOrtho (left, right, bottom,
top, mear, far) so that left < right, bottom < top, and near < far.

Exercise 2.11. (Programming) Return to the preceding experiment and flip the
near and far values in the projection statement, precisely, change it to

glOrtho(0.0, 100.0, 0.0, 100.0, 1.0, -1.0)

“cgBook” — 2022/6/6 — 22:06 — page 31 — #57

Is there a change in what we see? Does it seem that we are viewing the square from
the back so that the greenish corner is now at the lower left? No and no. The reason
is that, in the shoot step, OpenGL always projects up the z-axis, i.e., in its positive
direction. So, the viewing face is always the one with the higher z-value, which, given
the glOrtho () statement above, effectively is now on the z = — far = 1 plane.

Restore the original near and far far values and flip left and right, and then bottom
and top. Do you see differences? Yes. Can you explain them?

2.6 OpenGL Geometric Primitives

The geometric primitives — also called drawing primitives or, simply, primitives — of
OpenGL are the parts that programmers use in Lego-like manner to create objects
from the humblest to the incredibly complex. In fact, a thumbtack and a spacecraft
would both be assembled from the same small family of OpenGL primitives. The only
primitive we’ve seen so far though is the polygon. It’s time to get acquainted with
the whole family depicted in Figure 2.28.

Experiment 2.11. Replace glBegin (GL_POLYGON) with glBegin(GL_POINTS) in
square.cpp and make the point size bigger with a call to glPointSize(5.0) — the
default size being 1.0 — so that the part drawing an object now is

glPointSize(5.0); // Set point size.
glBegin (GL_POINTS) ;
glVertex3£(20.0, 20.0, 0.0);
glVertex3£(80.0, 20.0, 0.0);
glVertex3£(80.0, 80.0, 0.0);
glVertex3£(20.0, 80.0, 0.0);
glEnd();

See Figure 2.24. End

Experiment 2.12. Continue the previous experiment, replacing GL_POINTS with
GL_LINES, GL_LINE STRIP and, finally, GL_LINE_LOOP. See Figures 2.25-2.27. The
thickness of lines is set by glLineWidth(width). Change the parameter value of this
call in the program, currently the default 1.0, to see the difference. End

In the explanation that follows of how OpenGL draws each of the above primitives,
assume that the n vertices declared in the code between glBegin(primitive) and
glEnd () are vg,v1,...,Un—1 in that order, i.e., the declaration of the primitive is of
the form:

glBegin(primitive) ;
glVertex3f(*, *, *); // vg
glVertex3f(*, *, *); // v

glVertex3f(x, *, *); // vp—1
glEnd();

Refer to Figure 2.28 as you read.
GL_POINTS draws a point at each vertex
Vo, V1y---,Un—-1

GL_LINES draws a disconnected sequence of straight line segments (henceforth,
we’ll simply use the term “segment”) between the vertices, taken two at a time. In
particular, it draws the segments

VU1, VU3, ..., Un—2Un—1

Section 2.6
OPENGL GEOMETRIC
PRIMITIVES

Figure 2.24: Screenshot
of square.cpp using
GL_POINTS instead of
GL_POLYGON.

Figure 2.25: Screenshot
of square.cpp using
GL_LINES.

Figure 2.26: Screenshot
of square.cpp using
GL_LINE_STRIP.

Figure 2.27: Screenshot
of square. cpp using
GL_LINE_LOOP.

31

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

32

“cgBook” — 2022/6/6 — 22:06 — page 32 — #58

o o2
vy %

V; (2% 4

GL_POINTS GL_LINES GL_LINE_STRIP
V) v, v, v, v
v

Vs 3 4

v, Vs v, Y V3 Vs

GL_TRIANGLES GL_TRIANGLE_STRIP

(X, ¥,,0) (x5 ,,0)

Ve v, (x, »,,0) (x, »,,0)
GL_POLYGON glRectf(x , y,, x,, ¥,) glRectf(x,, ¥, x,, »,)

Figure 2.28: OpenGL’s geometric primitives. Vertex order is indicated by a curved arrow.
Primitives inside the red rectangle have been discarded from the core profile of later versions of
OpenGL, e.g., 4.x; however, they are still accessible via the compatibility profile.

if n is even. If n is not even then the last vertex v,,_; is simply ignored.

GL_LINE_STRIP draws the connected sequence of segments
VoV1, V1V2, ..., Un—2Un-1
Such a sequence is called a polygonal line or polyline.

GL_LINE_LOOP is the same as GL_LINE_STRIP, except that an additional segment
Up—1vp is drawn to complete a loop:

VU1, V1V2, ..., Un—2Un—1, Un—-1V0

Such a segment sequence is called a polygonal line loop.

cem Gk 20100 In world space points actually are O-dimensional objects having zero
Remark 2.10. 1 1d i 11 0-dimensional objects havi

size, while lines are 1-dimensional objects of zero width; in fact, values specified by
glPointSize() and glLineWidth() are used only for rendering, the default for both

“cgBook” — 2022/6/6 — 22:06 — page 33 — #59

being 1. Indeed, it would be rather hard to see a point rendered at zero size or a line Section 2.6
at zero width! OPENGL GEOMETRIC

Why does OpenGL provide separate primitives to draw polygonal lines and line PRIMITIVES
loops when both can be viewed as a collection of segments and drawn using GL_LINES?
For example,

glBegin(GL_LINE_STRIP) ;
v0; vl; v2; v3;
glEnd();

is equivalent to

glBegin(GL_LINES) ;
v0; vi; vl; v2; v2; v3;
glEnd();

The answer is first to avoid redundancy in vertex data. Secondly, possible rendering
error is avoided as well because OpenGL does not know, for example, that the two
vis in the GL_LINES specification above are supposed to represent the same vertex,
and may render them at slightly different locations because of differences in floating
point round-off.

Exercise 2.12. (Programming) This relates to the brief discussion on interpola-
tion at the end of Section 2.5. Replace the polygon declaration part of square.cpp
with

glLineWidth(5.0);
glBegin(GL_LINES) ;
glColor3f (1.0, 0.0, 0.0);
glVertex3£(20.0, 20.0, 0.0);
glColor3f(0.0, 1.0, 0.0);
glVertex3£(80.0, 20.0, 0.0);
glEnd();

drawing a line segment between a red and a green vertex. Can you say what the color
values should be at the midpoint (50.0,20.0,0.0) of the segment drawn? Check your
answer by drawing a point with those color values just above the midpoint, say at
(50.0,21.0,0.0), with the statements

glPointSize(5.0);
glBegin(GL_POINTS) ;
glColor3f (¥, *, *);
glVertex3£(50.0, 21.0, 0.0);
glEnd();
and comparing.
On to triangles next.

Experiment 2.13. Replace the polygon declaration part of square.cpp with:

glBegin (GL_TRIANGLES) ;

glVertex3£(10.0, 90.0, 0.0);

glVertex3£(10.0, 10.0, 0.0);

glVertex3£(35.0, 75.0, 0.0);

glVertex3£(30.0, 20.0, 0.0);

glVertex3£(90.0, 90.0, 0.0); Figure 2.29: Screenshot
glVerteXSf (80.0 , 40.0, O. 0) ; of square.cpp using

glEnd Q) ; GL_TRIANGLES with new
vertices. I

See Figure 2.29. End 33

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

Figure 2.30: Screenshot
of square.cpp using
GL_TRIANGLE_STRIP with
new vertices.

[
Triangle 0
L
Triangle 1

L
Triangle 2

Figure 2.31: Sliding
window picking the
vertices of triangles in a
strip.

34

“cgBook” — 2022/6/6 — 22:06 — page 34 — #60

GL_TRIANGLES draws a sequence of triangles using the vertices three at a time.
In particular, the triangles are

VoU1V2, V3V4Us5, ..., Un—3Un—2Un—1

if n is a multiple of 3; if it isn’t, the last one, or two, vertices are ignored.

The given order of the vertices for each triangle, in particular, vy, vy, vy for
the first, vs, v4,v5 for the second and so on, determines its orientation — whether
clockwise (CW) or counter-clockwise (CCW) — as perceived by a viewer. Figure 2.28
indicates orientation with curved arrows (e.g., the top of the two triangles drawn for
GL_TRIANGLES is CCW, while the bottom one CW, as perceived by a viewer at the
reader’s location).

The orientation of a 2D primitive, hence its vertex order, is important to specify
because this enables OpenGL to decide which face, front or back, the viewer sees.
We'll deal with this topic separately in Chapter 9. Till then disregard orientation
when drawing.

GL_TRIANGLES is a 2-dimensional primitive and, by default, triangles are drawn
filled. However, one may choose a different drawing mode by applying the
glPolygonMode (face, mode) command where face may be one of GL_-FRONT, GL_BACK
or GL_FRONT_AND_BACK, and mode one of GL_FILL, GL_.LINE or GL_POINT. Whether a
primitive is front-facing or back-facing depends, as said above, on its orientation.
To keep matters simple for now, though, we’ll use only GL_FRONT_AND _BACK in a
glPolygonMode () call, which applies the given drawing mode to a primitive regardless
of which face is visible. The GL_FILL option is, of course, the default for 2D primitives,
while GL_LINE draws the primitive in outline (or wireframe as it’s also called), and
GL_POINT only the vertices.

In fact, it’s often easier to decipher a 2D primitive by viewing it in outline, as we’ll
see in the following experiment introducing triangle strips.

Experiment 2.14. Continue the preceding experiment by inserting the call
glPolygonMode (GL_.FRONT_AND_BACK, GL_LINE) in the drawing routine and, further,
replacing GL_TRIANGLES with GL_TRIANGLE_STRIP. The relevant part of the display
routine then is as below:

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
glBegin (GL_-TRIANGLE_STRIP) ;

glVertex3£(10.0, 90.0, 0.0);

glVertex3£(10.0, 10.0, 0.0);

glVertex3£(35.0, 75.0, 0.0);

glVertex3£(30.0, 20.0, 0.0);

glVertex3£(90.0, 90.0, 0.0);

glVertex3£(80.0, 40.0, 0.0);
glEnd();

See Figure 2.30. End

GL_TRIANGLE_STRIP draws a sequence of triangles — called a triangle strip — as
follows: the first triangle is voviva, the second vivsvs (vg is dropped and vs brought
in), the third vovsv4 (v1 dropped and v4 brought in), and so on. Formally, the triangles
in the strip are

(if n is odd)

VoV1V2, V1V3V2, V2U3V4, ..., Un—-3Un—2Un—1

VoV1V2, V1V3V2, V2V3V4, ..., Unp—3Un—-1Un—2 (if n is even)

As we know, the order of its vertices is important in determining a triangle’s orientation,
e.g., the second triangle v;v3vy in the strip is not the same as vivov3. However, if we
disregard order for a moment, the vertices of the strip’s triangles are picked through a
“sliding window” as in Figure 2.31.

“cgBook” — 2022/6/6 — 22:06 — page 35 — #61

Exercise 2.13. (Programming) Create a square annulus as in Figure 2.32(a)
using a single triangle strip. You may first want to sketch the annulus on graph paper
to determine the coordinates of its eight corners. The figure depicts one possible
triangulation — division into triangles — of the annulus.

Hint: A solution is available in squareAnnulusl.cpp of Chapter 3.

Exercise 2.14. (Programming) Create the shape of Figure 2.32(b) using a single
triangle strip. A partial triangulation is indicated.

We come to the third and final of the triangle-drawing primitives.
Experiment 2.15. Replace the polygon declaration part of square.cpp with:

glPolygonMode (GL_FRONT_AND_BACK, GL_LINE);
glBegin (GL_TRIANGLE_FAN) ;

glVertex3f(10.0, 10.0, 0.0);
glVertex3f(15.0, 90.0, 0.0);
glVertex3f(55.0, 75.0, 0.0);
glVertex3£(80.0, 30.0, 0.0);
glVertex3£(90.0, 10.0, 0.0);

glEnd();

See Figure 2.33. End

GL_TRIANGLE_FAN draws a sequence of triangles — called a triangle fan — around
the first vertex as follows: the first triangle is vgvivs, the second vgvavs, and so on.
The full sequence is

VpU1V2, VoU2V3, ..., VoUn—2VUn—1

Exercise 2.15. (Programming) Create a square annulus using two triangle fans.
First sketch a triangulation different from that in Figure 2.32(a).

We've already met the polygon.
GL_POLYGON draws a polygon with the vertex sequence

VUL ... Un—1

(n must be at least 3 for anything to be drawn).
Finally, more a macro than a true OpenGL primitive:

glRectf(z1, y1, 22, y2) draws a rectangle lying on the z = 0 plane with sides
parallel to the - and y-axes. In particular, the rectangle has diagonally opposite
corners at (z1, y1, 0) and (22, y2, 0). The full list of four vertices is (z1, y1, 0), (2,
yl,0), (2, y2, 0) and (zI, y2, 0). The rectangle created is 2-dimensional and its
vertex order depends on the situation of the two vertices (z1, yI, 0) and (22, y2, 0)
with respect to each other, as indicated by the two drawings at the lower right of
Figure 2.28.

Note that glRectf () is a stand-alone call; it is not a parameter to glBegin() like
the other primitives.

Experiment 2.16. Replace the polygon declaration part of square.cpp with
glRectf(20.0, 20.0, 80.0, 80.0);

End

to see the exact same square (Figure 2.34) of the original square. cpp.

Section 2.6
OPENGL GEOMETRIC
PRIMITIVES

(a)

(b)

Figure 2.32: (a) Square
annulus — the region
between two bounding
squares — and a possible
triangulation (b) A
partially triangulated
shape.

Figure 2.33: Screenshot
of square. cpp using
GL_TRIANGLE_FAN with
new vertices.

Figure 2.34: Screenshot
of square. cpp using
glRectf ().

35

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

36

“cgBook” — 2022/6/6 — 22:06 — page 36 — #62

Important: The preceding two primitives, GL_.POLYGON and glRectf (), have both
been discarded from the core profile of later versions of OpenGL, e.g., 4.x, which we
are going to study ourselves later in the book; however, they are accessible via the
compatibility profile.

Why polygons and rectangles have been discarded is not hard to understand: both
can be made from triangles, so are really redundant. The reason we do still use them
in the early part of this book is because they afford an easily understood way to make
objects — e.g., the square polygon of our very first program square.cpp is certainly
more intuitive for a beginner than a triangle strip.

Exercise 2.16. (Programming) Replace the polygon of square. cpp first with a
triangle strip and then with a triangle fan.

AU LY

Not planar, not convex Planar, not convex Planar and convex

Figure 2.35: Polygons of various types.

It is important that if one does create a polygon, then one must be careful in
ensuring that it is a planar conver figure, i.e., it lies on one plane and has no “bays”
or “inlets” (see Figure 2.35); otherwise, rendering is unpredictable as we’ll soon see.
Therefore, even though we draw them occasionally for convenience, we recommend that
the reader, in order to avoid rendering issues and to prepare for the fourth generation
of OpenGL, altogether shun glRectfs and GL_POLYGONs in her own projects, and,
instead, draw 2D objects using exclusively GL_TRIANGLESs, GL_.TRIANGLE_STRIPs and
GL_TRIANGLE_FANs.

In fact, following are a couple of experiments, the second one showing how polygon
rendering can behave oddly indeed if one is not careful.

Eixperiment 2.17. Replace the polygon declaration of square.cpp with:

glBegin (GL_POLYGON) ;
glVertex3£(20.0, 20.0, O
glVertex3£(50.0, 20.0, O.
glVertex3£(80.0, 50.0, 0.0);
0
0

glVertex3£(80.0, 80.0, 0.0);
glVertex3£(20.0, 80.0, 0.0);
glEnd();
You see a convex 5-sided polygon (like the one in Figure 2.36(a)). Ena
(a) (®) (©)

Figure 2.36: Outputs: (a) Experiment 2.17 (b) Experiment 2.18 (c) Experiment 2.18, vertices
cycled.

“cgBook” — 2022/6/6 — 22:06 — page 37 — #63

Experiment 2.18. Replace the polygon declaration of square.cpp with: Section 2.7
APPROXIMATING

1Begin (GL_POLYGON) ;
§-5c8 CURVED OBJECTS

glVertex3£(20.0, 20.0, 0.0);

glVertex3£(80.0, 20.0, 0.0);

glVertex3£(40.0, 40.0, 0.0);

glVertex3£(20.0, 80.0, 0.0);
glEnd();

Display it both filled and outlined using appropriate glPolygonMode () calls. A non-
convex quadrilateral is drawn in either case (Figure 2.36(b)). Next, keeping the same
cycle of vertices as above, list them starting with glVertex3f(80.0, 20.0, 0.0)
instead:

glBegin (GL_POLYGON) ;
glVertex3£(80.0, 20.0, 0.0);
glVertex3£(40.0, 40.0, 0.0);
glVertex3£(20.0, 80.0, 0.0);
glVertex3£(20.0, 20.0, 0.0);
glEnd();

Make sure to display it both filled and outlined. When filled it’s a triangle, while
outlined it’s a non-convex quadrilateral (Figure 2.36(c)) identical to the one output
earlier! Since the cycle of the vertices around the quad is unchanged, only starting at
a different point, shouldn’t the output still be as in Figure 2.36(b), both filled and
outlined? End

We'll leave the apparent anomaly™ of this experiment as a mystery to be resolved
in Chapter 8 on triangulation. But, if you are impatient then the hint provided with
Exercise 2.9 should give the answer.

Exercise 2.17. (Programming) Verify, by cycling the vertices, that no such
anomaly arises in the case of the convex polygon of Experiment 2.17.

Figure 2.37: Double
annulus.

Exercise 2.18. (Programming) Draw the double annulus (a figure ‘8’) shown in
Figure 2.37 using as few triangle strips as possible. Introduce extra vertices on the
three boundary components, in addition to the original twelve, if you need to for a
triangulation.

Note: Such additional vertices are called Steiner vertices. For example, Figure 2.38
shows six additional Steiner vertices allowing for a more even triangulation — desirable
in certain applications — of a long thin rectangle, than just the original four.

Here’s an interesting semi-philosophical question. OpenGL claims to be
a 3D drawing API. Yet, why does it not have a single 3D drawing primitive, e.g., cube,
tetrahedron or such? All its primitives are 0-dimensional (GL_POINTS), 1-dimensional
(GL_LINE#*) or 2-dimensional (GL_-TRIANGLE%).

The answer lies in how we humans (the regular ones that is and not supers with
X-ray vision) perceive 3D objects such as cubes, tetrahedrons, chairs and spacecraft:
we see only the surface, which is two-dimensional. It makes sense for a 3D API,
therefore, to draw only as much as can be seen. Of course, OpenGL’s “3Dness” lies in
allowing us to make these drawings in 3D xyz-space.

Figure 2.38: Black edge

gives a triangulation,

consisting of 2 long thin

. . . triangles, using only the

2.7 Approximating Curved Objects rectangle’s own 4 vertices;
6 red Steiner vertices and

Looking back at Figure 2.28 we see that the OpenGL geometric primitives are composed the red edges give a

f points, straight line segments and fl ieces, the latter being triangles, r ngles triangulation consisting of
of points, straight line segments and flat pieces, the latter being triangles, rectangle: 8 nearly equal-sided

triangles.

“The rendering depends on the particular OpenGL implementation. However, all implementations
that we are aware of show identical behavior. 37

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

Figure 2.39: Screenshot
of circle.cpp.

38

“cgBook” — 2022/6/6 — 22:06 — page 38 — #64

and polygons. How, then, to draw curved objects such as discs, ellipses, spirals, beer
cans and flying saucers? The answer is to approximate them with straight and flat
OpenGL primitives well enough that the viewer cannot tell the difference. As a wag
once put it, “Sincerity is a very important human quality. If you don’t have it, you
gotta fake it!” In the next experiment we fake a circle.

Experiment 2.19. Run circle.cpp. Increase the number of vertices in the line
loop

glBegin (GL_LINE_LOOP) ;
for(i = 0; i < numVertices; ++i)

{
glColor3f ((float)rand()/(float)RAND_MAX,
(float)rand()/(float)RAND_MAX,
(float)rand()/(float)RAND_MAX) ;
glVertex3f(X + R * cos(t), Y + R * sin(t), 0.0);
t += 2 * MPI / numVertices;
}
glEnd();

by pressing ‘+’ till it “becomes” a circle, as in the screenshot of Figure 2.39. Press ‘-’
to decrease the number of vertices. The randomized colors are a bit of eye candy.
Note: M_PI is the constant representing 7 in the <cmath> library. End

The vertices of the loop of circle.cpp, which lie evenly spaced on the circle, are
collectively called a sample of points or, simply, sample from the circle. The loop
itself evidently bounds a regular polygon. See Figure 2.40(a). Clearly, the denser the
sample the better the loop approximates the circle.

YA

cos ¢, Y+Rsin t, 0)

=<V

(@ (b)

Figure 2.40: (a) A line loop joining a sample of points from a circle (b) Parametric equations for a
circle.

The parametric equations of the circle implemented are
=X+ Rcost, y=Y + Rsintl, z=0, 0<(<2m (2.1)

where (X,Y,0) is the center and R the radius. See Figure 2.40(b). A numVertices
number of sample points, with coordinates (X + Rcost,Y 4+ Rsint,0), equally spaced
apart is generated by starting with the angle ¢ = 0 and then incrementing it successively
by 27 /numVertices.

Observe that the vertex specifications occur within a loop construct, which is
pretty much mandatory if there is a large number of vertices.

Incidentally, the program circle.cpp also demonstrates output to the com-
mand window, as well as non-trivial user interaction via the keyboard. The
routine keyInput() is registered as the key handling routine in main() by the
glutKeyboardFunc (keyInput) statement. Note the calls to glutPostRedisplay ()
in keyInput () asking the display to be redrawn after each update of numVertices.

Follow these conventions when writing OpenGL code:

“cgBook” — 2022/6/6 — 22:06 — page 39 — #65

1. Program the “Esc” key to exit the program.
2. Describe user interaction at two places:

(a) The command window using cout ().

(b) Comments at the top of the source code.
Here’s a parabola.

Experiment 2.20. Run parabola.cpp. Press ‘+/-’ to increase/decrease the number
of vertices of the approximating line strip. Figure 2.41 is a screenshot with enough
vertices to make a smooth-looking parabola.

The vertices are equally spaced along the z-direction. The parametric equations
implemented are

z=50+50t, y=1002, 2=0, —1<t<1

End

the constants being chosen so that the parabola is centered in the window.

Exercise 2.19. (Programming) Modify circle.cpp to draw a flat 3-turn spiral
like the one in Figure 2.42.

Exercise 2.20. (Programming) Modify circle.cpp to draw a disc (i.e., a filled
circle) by way of (a) a polygon and (b) a triangle fan.

Exercise 2.21. (Programming) Draw a flat leaf like the one in Figure 2.43.

Exercise 2.22. (Programming) Modify circle.cpp to draw a circular annulus,
like one of those shown in Figure 2.44, using a triangle strip. Don’t look at the
program circularAnnuluses.cpp!

We'll be returning shortly to the topic of approximating curved objects, but it’s on to
3D next.

2.8 Three Dimensions, the Depth Buffer and
Perspective Projection

The reader by now may be impatient to move on from the plane (pun intended) and
simple to full 3D. Okay then, let’s get off to an easy start in 3-space by making use of
the third dimension to fake a circular annulus. Don’t worry, we’ll be doing fancier
stuff soon enough!

Experiment 2.21. Run circularAnnuluses.cpp. Three identical-looking red
circular annuluses (Figure 2.44) are drawn in three different ways:

i) Upper-left: There is not a real hole. The white disc overwrites the red disc as it
appears later in the code:

glColor3f (1.0, 0.0, 0.0);
drawDisc(20.0, 25.0, 75.0, 0.0);
glColor3f(1.0, 1.0, 1.0);

drawDisc(10.0, 25.0, 75.0, 0.0);

Note: The first parameter of the subroutine drawDisc() is the radius and the
remaining three the coordinates of the center.

ii) Upper-right: There is not a real hole either. A white disc is drawn closer to the
viewer than the red disc thus blocking it out:

Section 2.8

THREE DIMENSIONS,
THE DEPTH BUFFER
AND PERSPECTIVE
PROJECTION

Figure 2.41: Screenshot
of parabola.cpp.

Figure 2.42: Flat spiral.

Figure 2.43: Flat leaf.

........

Figure 2.44: Screenshot
of circularAnnuluses.-

cpp.

Chapter 2

ON TO OPENGL AND

40

3D COMPUTER
GRAPHICS

“cgBook” — 2022/6/6 — 22:06 — page 40 — #66

glEnable (GL_-DEPTH_TEST) ;
glColor3f(1.0, 0.0, 0.0);
drawDisc(20.0, 75.0, 75.0, 0.0);
glColor3f(1.0, 1.0, 1.0);
drawDisc(10.0, 75.0, 75.0, 0.5);
glDisable (GL_DEPTH_TEST) ;

Observe that the z-value of the white disc’s center is greater than the red disc’s,
bringing it closer to the viewing face. We'll discuss momentarily the mechanics
of one primitive blocking out another.

iii) Lower: A true circular annulus with a real hole:

if (isWire) glPolygonMode (GL_FRONT, GL_LINE);
else glPolygonMode (GL_FRONT, GL_FILL);
glColor3f (1.0, 0.0, 0.0);

glBegin (GL_TRIANGLE_STRIP) ;

glEnd();
Press the space bar to see the wireframe of a triangle strip. End

Exercise 2.23. (Programming) Interchange in circularAnnuluses.cpp the
drawing orders of the red and white discs — i.e., the order in which they appear in the
code — in either of the top two annuluses. Which one is affected? (Only the first!)
Why?

Note the use of a text-drawing routine in circularAnnuluses.cpp.
OpenGL offers only rudimentary text-drawing capability but it often comes in handy,
especially for annotation. We’ll discuss text-drawing in fair detail in Chapter 3.

By far the most important aspect of circularAnnuluses.cpp is its use of the
depth buffer, which allows objects nearer the eye to block out ones behind them, to
draw the upper-right annulus. Following is an introduction to this critical 3D utility.

2.8.1 A Vital 3D Utility: The Depth Buffer

Enabling the depth buffer, also called the z-buffer, causes OpenGL to eliminate, prior
to rendering, parts of objects that are obscured (or, occluded) by others.

Precisely, a point of an object is not drawn if its projection — think of a ray from
that point — toward the viewing face is obstructed by another object. See Figure 2.45(a)
for the making of the upper-right annulus of circularAnnuluses.cpp: the white disc
obscures the part of the red disc behind it (because the projection is orthogonal, the
obscured part is exactly the same shape and size as the white disc). This process is
called hidden surface removal or depth testing or visibility determination.

Stated mathematically, the result of hidden surface removal in case of orthographic
projection is as follows.

Fix an z-value X and a y-value Y within the span of the viewing box. Consider
the set S of points belonging to objects in the viewing box with their z-value equal to
X and y-value equal to Y. Precisely, S is the set of points where the straight line L
through (X,Y,0) parallel to the z-axis intersects objects in the viewing box. Clearly,
S is of the form S = {(X,Y, z)}, where z varies depending on the intersected objects
(it’s empty if L intersects nothing in the viewing box). Let Z be the largest of these
z-values, assuming S to be not empty. In other words, of points belonging to objects
in the viewing box with z-value equal to X and y-value to Y, (X,Y, Z) has the largest
z-value and lies closest to the viewing face.

Next, observe that all points in S project to the same point P = (X,Y, —near),
on the viewing face. Here, then, is the consequence of hidden surface removal: P is
rendered with the color attributes of (X,Y, Z). The implication is that only (X,Y, Z),

“cgBook” — 2022/6/6 — 22:06 — page 41 — #67

red disc onz= 0.0 Section 2.8
whltei‘dlsc onz=0.5 A THREE DIMENSIONS,
Y THE DEPTH BUFFER
AND PERSPECTIVE
PROJECTION
C (30, 20, —0.5)
projection ih direction L #B (30, 20,0.1)
of increasing z 4 (30, 20, 0.3)
o o P(30,20{1) ~
} X / *
Z, \ z
viewing face on
(a) the plane z =1 (b)

Figure 2.45: (a) The front white disc obscures part of the red one (b) The point A with largest
z-value is projected onto the viewing plane so P is red.

closest to the viewing face, is drawn of the points in S, the rest, which are behind it,
being obscured.

For example, in Figure 2.45(b), the three points A, B and C, colored red, green
and blue, respectively, share the same first two coordinate values, namely, X = 30
and Y = 20. So, all three project along the line L to the same point P on the viewing
face. As A has the largest z coordinate of the three, it obscures the other two and P,
therefore, is drawn red.

The z-buffer itself is a block of memory in the GPU containing z-values, one per
pixel. If depth testing is enabled, then, as a primitive is processed for rendering, the
z-value of each of its points — or, more accurately, each of its pixels — is compared
with that of the one with the same (z, y)-values currently resident in the z-buffer. If
an incoming pixel’s z-value is greater, then its RGB attributes and z-value replace
those of the current one; if not, the incoming pixel’s data is discarded.

For example, if the order in which the points of Figure 2.45(b) happen to appear
in the code is C, A and B, here’s how the color and z-buffer values at the pixel
corresponding to P change:

draw C'; // Pixel corresponding to P gets color blue
// and z-value -0.5.

draw A; // Pixel corresponding to P gets color red
// and z-value 0.3: A’s values overwrite C’s.

draw B; // Pixel corresponding to P retains color red
// and z-value 0.3: B is discarded.

In actual implementation in the GPU, the value per pixel in the z-buffer
is between 0 and 1, with 0 corresponding to the near face of the viewing box and 1
the far face. What happens is that, before recording them in the z-buffer, the system
transforms (by a scaling, though not necessarily linear) world space z-values each to
the range [0, 1] with a flip in sign so that pixels farther from the viewing face have
higher z-value. Consequently, following this transformation, lower values actually
win the competition to be visible in the z-buffer. However, when writing OpenGL
code we are operating in world space, where higher z-values in the viewing box are
closer to the viewing face, and need not concern ourselves with this implementation
particularity.
We ask you to note in circularAnnuluses.cpp the enabling syntax of hidden
surface removal so that you can implement it in your own programs:

1. The GL_DEPTH_BUFFER_BIT parameter of glClear (GL_COLOR_BUFFER_BIT \
GL_DEPTH_BUFFER_BIT) in the drawScene () routine causes the depth buffer to

be cleared. 41

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

Figure 2.46: Bull’s eye
target.

(Rcos ¢, Rsin ¢, t — 60.0)

b/

Z

Figure 2.47: Parametric
equations for a helix.

3
o

Figure 2.48: Screenshot
of helix.cpp using
orthographic projection
with the helix coiling
around the z-axis.

Figure 2.49: Screenshot
of helix.cpp using
orthographic projection
with the helix coiling
around the y-axis.

42

“cgBook” — 2022/6/6 — 22:06 — page 42 — #68

2. The command glEnable (GL_DEPTH.TEST) in the drawScene() routine turns
hidden surface removal on. The complementary command is glDisable(GL_-
DEPTH_TEST).

3. The GLUT_DEPTH parameter of glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB
| GLUT_DEPTH) in main() causes the depth buffer to be initialized.

Exercise 2.24. (Programming) Draw a bull’s eye target as in Figure 2.46 by
means of five discs of different colors, sizes and depths.

Exercise 2.25. (Programming) Here’s a fun exercise related more to clipping
than depth buffering though. The top two annuluses of circularAnnuluses.cpp are
“fake” in that there is not a real hole in the disc. Can you make a fake annulus in yet
another way by drawing first a filled disc as a triangle fan, e.g., as in Exercise 2.20(b),
and then repositioning only the center of the fan outside the viewing box (so that the
object is really a cone)?

The z-buffer, of course, is incredibly important in OpenGL’s 3D scheme
of things. However, it really will not be called upon to do much in the simple scenes
with very few objects that we are going to be creating for a while. It’s in busy scenes
that the depth buffer comes into its own.

Before z-buffers started taking over the world with the advent of the
first GPUs in the early 80s — by virtue of their simplicity and sheer speed derived
from being implemented in GPU hardware — a more complex software technique based
on so-called BSP (binary space partitioning) trees was used extensively for hidden
surface removal. We don’t cover this technique ourselves in this book but an earlier
edition had a detailed discussion which the interested reader will find extracted at the
Downloads page of our website.

2.8.2 A Helix and Perspective Projection

We get more seriously 3D next by drawing a spiral or, more scientifically, a helix. A
helix, though itself a 1-dimensional object — drawn as a line strip actually — can be
made authentically only in 3-space.
Open helix.cpp but don’t run it as yet! The parametric equations implemented
are
x = Rcost, y= Rsint, z=t—60.0, —107 <t < 107w (2.2)

See Figure 2.47. Compare these with Equation (2.1) for a circle centered at (0,
0, 0), putting X = 0 and Y = 0 in that earlier equation. The difference is that the
helix climbs up the z-axis simultaneously as it rotates circularly with increasing ¢ (so,
effectively, it coils around the z-axis). Typically, one writes simply z = ¢ for the last
coordinate; however, we tack on “—60.0” to push the helix far enough down the z-axis
so that it’s contained entirely in the viewing box.

Exercise 2.26. Even before viewing the helix, can you say from Equation (2.2) how
many times it is supposed to coil around the z-axis, i.e., how many full turns it is
supposed to make?

Hint: One full turn corresponds to an interval of 27 along ¢.

ExpeI‘iment 2.22. Okay, run helix.cpp now. All we see is a circle as in Figure 2.48!
There’s no sign of any coiling up or down. The reason, of course, is that the
orthographic projection onto the viewing face flattens the helix. Let’s see if it makes
a difference to turn the helix upright, in particular, so that it coils around the y-axis.
Accordingly, replace the statement

glVertex3f(R * cos(t), R * sin(t), t - 60.0);

in the drawing routine with

“cgBook” — 2022/6/6 — 22:06 — page 43 — #69

glVertex3f(R * cos(t), t, R * sin(t) - 60.0);
Hmm, not a lot better (Figure 2.49). Enda

Because it squashes a dimension, typically, orthographic projection is not suitable
for 3D scenes. OpenGL, in fact, provides another kind of projection, called perspective
projection, more appropriate for most 3D applications.

Perspective projection is implemented with a glFrustum() call replacing g10rtho ().

Instead of a viewing box, a glFrustum(left, right, bottom, top, near, far) call sets
up a viewing frustum — a frustum is a truncated pyramid whose top has been cut off
by a plane parallel to its base — in the following manner (see Figure 2.50):

base on the plane z = —far
((far/near) left, / ((far/near) right,
(far/near) top, —far) (far/near) top, —far)

Viewing frustum

O
((far/near) left, %ﬂ ((far/near) right,
hoot

(far/near) bottom, —far) (far/near) bottom, —far)
s

viewing face (film) on the

(lefi, top, —near @]’/ (right, top, —near)

- viewing plane z = —near
(left, bottom, —near) right, bottom, —near)
X print
(0.0.00" e @
= apex
z OpenGL Window

Computer Screen

Figure 2.50: Rendering with glFrustum().

The apex of the pyramid is at the origin. The front face, or viewing face, of

the frustum is the rectangle, lying on the plane z = —near, whose corners are (left,
bottom, —near), (right, bottom, —near), (left, top, —near), and (right, top, —near).
The plane z = —near is the viewing plane — in fact, it’s the plane which truncates the
pyramid.

The four edges of the pyramid emanating from the apex pass through the four
corners of the viewing face. The base or back face of the frustum is the rectangle
whose vertices are precisely where the pyramid’s four edges intersect the z = — far
plane. By proportionality with the front vertices, the coordinates of the base vertices
are:

((far/near) left, (far/near) bottom, —far),
((far/near) right, (far/near) bottom, —far),
((far/near) left, (far/near) top, —far),
((far/near) right, (far/near) top, —far)

Values of the glFrustum() parameters are typically set so that the frustum lies
symmetrically about the z-axis; in particular, right and top are chosen to be positive,

Section 2.8

THREE DIMENSIONS,
THE DEPTH BUFFER
AND PERSPECTIVE
PROJECTION

43

Chapter 2

ON TO OPENGL AND

44

3D COMPUTER
GRAPHICS

“cgBook” — 2022/6/6 — 22:06 — page 44 — #70

and left and bottom their respective negatives. The parameters near and far should
both be positive and near < far, which means the frustum lies entirely on the negative
side of the z-axis with its base behind the viewing face.

An intuitive way to relate the box of gl0rtho (left, right, bottom, top,
near, far) with the frustum of glFrustum(left, right, bottom, top, near, far) is
to note first that their front faces are identical and that the back face of the box is
simply a copy of the front face shifted back, while the back face of the frustum is
stretched as it’s shifted back, the corners following rays from the origin.

Example 2.1. Determine the corners of the viewing frustum created by the call
glFrustum(-15.0, 15.0, -10.0, 10.0, 5.0, 50.0).

Answer: By definition, the corners of the front face are (—15.0,—10.0,—5.0),
(15.0,—10.0, —5.0), (—15.0,10.0,—5.0) and (15.0,10.0,—5.0). The x- and y-values
of the vertices of the base (or back face) are scaled from those on the front
by a factor of 10 (because far/near = 50/5 = 10). The base vertices are,
therefore, (—150.0, —100.0, —50.0), (150.0, —100.0, —50.0), (—150.0, 100.0, —50.0) and
(150.0,100.0, —50.0).

FEixercise 2.27. Determine the corners of the viewing frustum created by the call
glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0).

The rendering sequence in the case of perspective projection is a two-step shoot-
and-print, similar to orthographic projection. The shooting step again consists of
projecting objects within the viewing frustum onto the viewing face, except that the
projection is no longer perpendicular. Instead, each point is projected along the line
joining it to the apex, as depicted by the light black rays from the bottom and top of
the man in Figure 2.50.

Perspective projection causes foreshortening because objects farther away from
the apex appear smaller (a phenomenon also called perspective transformation). For
example, see Figure 2.51 where A and B are of the same height, but the projection
pA is shorter than the projection pB.

section of the viewing face

Figure 2.51: Section of the viewing frustum showing foreshortening.

The second rendering step of printing where the viewing face is proportionately
scaled to fit onto the OpenGL window is exactly as for orthographic projection.
Exactly as for orthographic projection as well, the scene is clipped to within the
viewing frustum by the 6 planes that bound the latter.

Time now to see perspective projection work its magic!

ExpeI‘iment 2.23. Fire up the original helix.cpp program. Replace orthographic
projection with perspective projection; in particular, replace the projection statement

gl0rtho(-50.0, 50.0, -50.0, 50.0, 0.0, 100.0);
with

glFrustum(-5.0, 5.0, -56.0, 5.0, 5.0, 100.0);

“cgBook” — 2022/6/6 — 22:06 — page 45 — #T71

You can see a real spiral now (Figure 2.52). View the upright version as well
(Figure 2.53), replacing

glVertex3f(R * cos(t), R * sin(t), t - 60.0);
with
glVertex3f (R * cos(t), t, R * sin(t) - 60.0);
A lot better than the orthographic version is it not?! End

Perspective projection is more realistic than orthographic projection as it mimics
how images are formed on the retina of the eye by light rays traveling toward a point.
And, in fact, it’s precisely foreshortening which cues us humans to the distance of an
object.

One can think of the apex of the frustum as the location of a point
camera and the viewing face as its film.

One might think of orthographic and perspective projections both as
being along lines of projection convergent to a single point, the center of projection
(COP). In the case of perspective projection, this is a regular point with finite
coordinates; however, for orthographic projection the COP is a “point at infinity” —
i.e., infinitely far away — so that lines toward it are parallel.

Moreover, the sides of a viewing volume from back to front logically follow the
lines of projection, so leading us from a box in the case of orthographic projection to
a frustum in the case of perspective projection.

There do exist 3D applications, e.g., in architectural design, where
foreshortening amounts to distortion, so, in fact, orthographic projection is preferred.

It’s because it captures the image of an object by intersecting rays
projected from the object — either orthographically or perspectively — with a plane,
which is similar to how a real camera works, that OpenGL is said to implement the
synthetic-camera model.

Exercise 2.28. (Programming) Continuing from where we were at the end of the
preceding experiment using helix.cpp, successively replace the glFrustum() call as
follows, trying in each case to predict the change in the display caused by the change
in the frustum before running the code:

(a) Move the back face back: glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 120.0)
(b) Move the front face back: glFrustum(-5.0, 5.0, -5.0, 5.0, 10.0, 100.0)

)
)

(c) Move the front face forward: glFrustum(-5.0, 5.0, -5.0, 5.0, 2.5, 100.0)
)

(d) Make the front face bigger: glFrustum(-10.0, 10.0, -10.0, 10.0, 5.0,
100.0)

Parts (b) and (c¢) show, particularly, how moving the “film” causes the camera to
zoom.

Exercise 2.29. Formulate mathematically how hidden surface removal should work
in the case of perspective projection, as we did in Section 2.8.1 for orthographic
projection.

Eixperiment 2.24. Run moveSphere. cpp, which simply draws a movable sphere
in the OpenGL window. Press the left, right, up and down arrow keys to move the
sphere, the space bar to rotate it and ‘r’ to reset.

The sphere appears distorted as it nears the boundary of the window, as you
can see from the screenshot in Figure 2.54. Can you guess why? Ignore the code,

Section 2.8

THREE DIMENSIONS,
THE DEPTH BUFFER
AND PERSPECTIVE
PROJECTION

Figure 2.52: Screenshot
of helix.cpp using
perspective projection
with the helix coiling up
the z-axis.

Figure 2.53: Screenshot
of helix.cpp using
perspective projection
with the helix coiling up
the y-axis.

Figure 2.54: Screenshot
of moveSphere. cpp.

45

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

Figure 2.56: Screenshot
of strangeK.cpp.

46

“cgBook” — 2022/6/6 — 22:06 — page 46 — #72

especially unfamiliar commands such as glTranslatef () and glRotatef (), except
for that projection is perspective.

This kind of peripheral distortion of a 3D object is unavoidable in any viewing
system which applies perspective projection. It happens with a real camera as well,
but we don’t notice it as much because the field of view when snapping pictures is
usually quite large with objects of interest tending to be centered, and the curved lens
is designed to compensate as well. End

2.9 Drawing Projects

Here are a few exercises to stretch your drawing muscles. The objects may look rather
different from what we have drawn so far, but as programming projects aren’t really.
In fact, you can probably cannibalize a fair amount of code from earlier programs.

J.
y=sinx :)t) Q
R N NSy
(@) (d
© M K
Figure 2.55: Draw these!
Exercise 2.30. (Programming) Draw a sine curve between x = —m and v =7

(Figure 2.55(a)). Follow the strategy of circle.cpp to draw a polyline through a
sample from the sine curve.

Exercise 2.31. (Programming) Draw an ellipse. Recall the parametric equations
for an ellipse on the zy-plane, centered at (X,Y'), with semi-major axis of length A
and semi-minor axis of length B (Figure 2.55(b)):

=X+ Acosl, y=Y + Bsint, z=0, 0<(<27

Eixercise 2.32. (Programming) Draw the letter ‘A’ as a two-dimensional figure
like the shaded region in Figure 2.55(c). It might be helpful to triangulate it
first on graph paper. Try to pack as many triangles into as few triangle strips
as possible (because each drawing call costs in the GPU, but see the next experiment).
Allow the user to toggle between filled and wireframe a la the bottom annulus of
circularAnnuluses.cpp.

Note: Variations of this exercise may be made by asking different letters. Keep in
mind that curvy letters like ‘S’ are harder than straight-sided ones.

Experiment 2.25. Run strangeK.cpp, which shows how one might take the edict
of minimizing the number of triangle strips a bit far. Press space to see the wireframe
of a perfectly good ‘K’ (Figure 2.56).

Interestingly, though, the letter is drawn as a single triangle strip with 17 vertices
within the one glBegin (GL_TRIANGLE_STRIP)-glEnd (). We ask the reader to parse

“cgBook” — 2022/6/6 — 22:06 — page 47 — #73

this strip as follows: sketch the K on on a piece of paper, label the vertices vg, v1, . .., v16
according to their code order (e.g., the lower left vertex of the straight side is vy, to its
right is vy, and so on, and, yes, some vertices are labeled multiple times), and, finally,
examine each one of the strip’s 15 component triangles (best done by following the
sliding window scheme as in Figure 2.31).

Did you spot a few so-called degenerate triangles, e.g., one with all its vertices
along a straight line or with coincident vertices? Such triangles, which are not really
2D, are best avoided when drawing a 2D figure. Ena

Exercise 2.33. (Programming) Draw the number ‘8’ as the 2D object in
Figure 2.55(d). Do this in two different ways: (i) drawing 4 discs and using the
z-buffer, and (ii) as a true triangulation, allowing the user to toggle between filled and
wireframe. For (ii), a method of dividing the ‘8’ into two triangle strips is suggested
in Figure 2.55(d).

Note: Variations of part (ii) may be made by asking different numbers.

Exercise 2.34. (Programming) Draw a ring with cross-section a regular (equal-
sided) polygon as in Figure 2.55(e), where a scheme to triangulate the ring in one
triangle strip is indicated. Allow the user to change the number of sides of the
cross-section. Increasing the number of sides sufficiently should make the ring appear
cylindrical as in Figure 2.55(f). Use perspective projection and draw in wireframe.

Exercise 2.35. (Programming) Draw a cone as in Figure 2.55(g) where a possible
triangulation is indicated. Draw in wireframe and use perspective projection.

Exercise 2.36. (Programming) Draw a children’s slide as in Figure 2.55(h).
Choose an appropriate equation for the cross-section of the curved surface — part of
a parabola, maybe — and then “extrude” it sideways as a triangle strip. (If you did
Exercise 2.34 then you've already extruded a polygon.) Draw in wireframe and use
perspective projection.

Exercise 2.37. (Programming) Draw in a single scene a crescent moon, a
half-moon and a three-quarter moon (Figures 2.55(i)-(k)). Each should be a true
triangulation. Label each as well using text-drawing.

Your output from Exercises 2.34-2.36 may look a bit “funny”, especially
viewed from certain angles. For example, the ring viewed head-on down its axis may
appear as two concentric circles on a single plane. This problem can be alleviated by
drawing the object with a different alignment or, equivalently, changing the viewpoint.
In Experiment 2.26, coming up shortly, we’ll learn code for the user to change her
viewpoint in real-time.

This thought may have occurred to the reader earlier, when we were
discussing the viewing box or frustum: situating the front face of, say, the frustum
very close to the eye (in other words, a near parameter value of glFrustum() of nearly
zero) and the back face very far (in other words, a very large far parameter value)
will create a large viewing space and less likelihood of inadvertent clipping.

However, beware! Increasing the distance between the near and far planes of
the viewing space (box or frustum) causes loss in depth resolution because world
space depths are transformed all to the range [0, 1] in the z-buffer (see Remark 2.13).
Moreover, in the case of the frustum there’ll be loss of precision too if the front face is
small — as it will be if close to the eye.

In fact, the user should try to push the front face as far back and bring the back
face as close in as possible while keeping the scene within the viewing volume.

Section 2.9
DRAWING PROJECTS

47

Chapter 2

ON TO OPENGL AND

3D COMPUTER
GRAPHICS

48

“cgBook” — 2022/6/6 — 22:06 — page 48 — #74

2.10 Approximating Curved Objects Once More

Our next 3-space drawing project is a bit more challenging: a hemisphere, which is a
2-dimensional object. We'll get in place, as well, certain design principles which will
be expanded in Chapter 10 which is dedicated to drawing (no harm starting early).

A hemisphere is a 2-dimensional object because it is a surface. Recall
that a helix is 1-dimensional because it’s line-like. Now, both hemisphere and helix
need 3-space to “sit in”; they cannot do with less. For example, you could sketch
either on a piece of paper (2-space) but it would not be the real thing. On the other
hand, a circle — another 1D object — does sit happily in 2-space.

Consider a hemisphere of radius R, centered at the origin O, with its circular
base lying on the xz-plane. Suppose the spherical coordinates of a point P on this
hemisphere are a longitude of 0 (measured counter-clockwise from the z-axis when
looking from the plus side of the y-axis) and a latitude of ¢ (measured from the
xz-plane toward the plus side of the y-axis). See Figure 2.57(a). The Cartesian
coordinates of P are by elementary trigonometry

(Rcos¢cosl, Rsing, —Rcos¢sinl) (2.3)
The range of #is 0 < 6 < 27 and of ¢ is 0 < ¢ < 7/2.

north pole

Figure 2.57: (a) Spherical and Cartesian coordinates on a hemisphere (b) Approxi-
mating a hemisphere with latitudinal triangle strips.

FEixercise 2.38. Verify that the Cartesian coordinates of P are as claimed in (2.3).
Suggested approach: From the right-angled triangle OPP’ one has |[PP'| = Rsin¢
and |OP'| = Rcos¢. |PP’| is the y-value of P. Next, from right-angled triangle
OP'P”, find in terms of |OP’| and 6 the values of |OP”| and |P'P”|. The first is the
z-value of P, while the latter negated the z-value.

Sample the hemisphere at a mesh of (p+1)(g+1) points P;;, 0< i <p, 0 < j <gq,
where the longitude of P;; is (¢/p) * 2w and its latitude (j/¢) * /2. In other words,
p+1 longitudinally equally-spaced points are chosen along each of ¢+ 1 equally-spaced
latitudes. See Figure 2.57(b), where p = 10 and g = 4. The sample points P;; are not
all distinct. In fact, Py; = Ppj, for all j, as the same point has longitude both 0 and
27; and, the point P, for all 4, is identical to the north pole, which has latitude /2
and arbitrary longitude.

The plan now is to approximate the circular band between each pair of adjacent
latitudes with a triangle strip — such a strip will take its vertices alternately from
either latitude. Precisely, we’ll draw one triangle strip with vertices at

Poji1: Pojs Prjv1, Prjs-oy Ppjr1, Ppj

for each j, 0 < j < ¢ — 1, for a total of g triangle strips. These ¢ triangle strips
together will approximate the hemisphere itself.

“cgBook” — 2022/6/6 — 22:06 — page 49 — #T75

Experiment 2.26. Run hemisphere.cpp, which implements exactly the strate
p 9% Yy gy
just described. You can verify this from the snippet that draws the hemisphere:

for(j = 0; j < q; j*++)

{
// One latitudinal triangle strip.
glBegin (GL_TRIANGLE_STRIP) ;
for(i = 0; i <= p; i++)
{
glVertex3f (R * cos((float) (j+1)/q * M_PI/2.0) *
cos(2.0 * (float)i/p * MPI),
R * sin((float) (j+1)/q * M_PI/2.0),
-R * cos((float) (j+1)/q * MPI/2.0) *
sin(2.0 * (float)i/p * M_PI));
glVertex3f (R * cos((float)j/q * M_PI/2.0) *
cos(2.0 * (float)i/p * MPI),
R * sin((float)j/q * M_PI/2.0),
-R * cos((float)j/q * M_PI/2.0) *
sin(2.0 *(float)i/p * M_PI));
}
glEnd();
}

Increase/decrease the number of longitudinal slices by pressing ‘P/p’. In-
crease/decrease the number of latitudinal slices by pressing ‘Q/q’. Turn the hemisphere

about the axes by pressing ‘x’, ‘X’ ‘y’, ‘Y’ ‘2’ and ‘Z’. See Figure 2.58 for a screenshot.
Ena

Experiment 2.27. Playing around a bit with the code will help clarify the
construction of the hemisphere:

(a) Change the range of the hemisphere’s outer loop from
for(j = 0; j < q; j++)
to
for(j = 0; j < 1; j++)
Only the bottom strip is drawn. The keys ‘P/p’ and ‘Q/q’ still work.
(b) Change it again to
for(j = 0; j < 2; j++)
Now, the bottom two strips are drawn.
(¢) Reduce the range of both loops:
for(j = 0; j < 1; j++)

for(i = 0; i <= 1; i++)

The first two triangles of the bottom strip are drawn.

(d) Then, increase the range of the inner loop by 1:
for(j = 0; j < 1; j+H

for(i = 0; i <= 2; i++)

Section 2.10
APPROXIMATING
CURVED OBJECTS
ONCE MORE

¢

Figure 2.58: Screenshot
of hemisphere.cpp.

49

Chapter 2

ON TO OPENGL AND
3D COMPUTER
GRAPHICS

(2)
(b)

Figure 2.59: (a) Half a
hemisphere (b) Slice of a
hemisphere.

Figure 2.60: A
wireframe sphere.

50

“cgBook” — 2022/6/6 — 22:06 — page 50 — #76

The first four triangles of the bottom strip are drawn. Ena

There’s syntax in hemisphere.cpp — none to do with the actual making of
the hemisphere — which you may be seeing for the first time. The command
glTranslatef (0.0, 0.0, -10.0) is used to move the hemisphere, drawn initially
centered at the origin, into the viewing frustum, while the glRotatef () commands
turn it. We'll be studying these so-called modeling transformations in Chapter 4 but
you are encouraged to experiment with them even now as the syntax is fairly intuitive.
The set of three glRotatef (s, particularly, comes in handy to re-align a scene.

Exercise 2.39. (Programming) Modify hemisphere.cpp to draw:
(a) the bottom half of a hemisphere (Figure 2.59(a)).

(b) a 30° slice of a hemispherical cake (Figure 2.59(b)). Note that simply reducing
the range of the inner loop of hemisphere. cpp produces a slice of cake without
two sides and bottom, so these have to be added in separately to close up the
slice.

Make sure the ‘P/p/Q/q’ keys still work.

Exercise 2.40. A sphere, of course, can be made of two separate back-to-back
hemispheres. However, try to manufacture it as one object with a simple modification
of hemisphere.cpp so that the latitude spans a range of 7 instead of 7/2. Your
output might be something like Figure 2.60.

Exercise 2.41. (Programming) Just to get you thinking about animation,
which we’ll be studying in depth soon enough, guess the effect of replacing
glTranslatef (0.0, 0.0, -10.0) with glTranslatef(0.0, 0.0, -20.0) in hemi-

sphere.cpp. Verify.

Lampshade I Lampshade II Spiral band Rugby football

And, here are some more things to draw.

Figure 2.61: More things to draw.

Exercise 2.42. (Programming) Draw the objects shown in Figure 2.61. Give
the user an option to toggle between filled and wireframe renderings. Borrow the
glRotatef ()s from hemisphere.cpp to allow an object to be turned.

Hint: A way to make the football, or ellipsoid, is to modify hemisphere.cpp to first
make half an ellipsoid (a hemi-ellipsoid?). In fact, similarly to (2.3), a generic point
on a hemi-ellipsoid is

(Rycos¢cost, Rysing, —R, cos¢sind)

where the constants R,, R, and R, are the lengths of the semi-principal axes. Two
hemi-ellipsoids back-to-back would then give a whole ellipsoid. Or, you could follow
the idea of Exercise 2.40 to make it as one object.

Filled renderings of 3D scenes, even with color, rarely look pleasant
in the absence of lighting. See for yourself by applying color to 3D objects you have
drawn so far (remember to invoke a glPolygonMode (¥, GL_FILL) call). For this
reason, we'll draw mostly wireframe till Chapter 11, which is all about lighting. You’ll
have to bear with this. Wireframe, however, fully exposes the geometry of an object,
which is not a bad thing when one is learning object design.

“cgBook” — 2022/6/6 — 22:06 — page 51 — #77

2.11 An OpenGL Program End to End Section 2.11

AN OPENGL PROGRAM
We have already touched on almost every command of square. cpp which is functional pyp o EaD

from a graphics points of view. However, let’s run over the whole program to see all
that goes into making OpenGL code tick.
We start with main():

1. glutInit(&arge, argv) initializes the FreeGLUT library. FreeGLUT [49],
successor to GLUT (OpenGL Utility Toolkit), is a library of calls to manage
a window and monitor mouse and keyboard input (the reason such a separate
library is needed is that OpenGL itself is only a library of graphics calls).

2. glutInitContextVersion(4, 3);
glutInitContextProfile (GLUT_COMPATIBILITY_PROFILE);

tells FreeGLUT that the program will be wanting an OpenGL 4.3 context —
this context being the interface between an instance of OpenGL and the rest
of the system — which is backward-compatible in that legacy commands are
implemented. This, for example, allows us to draw with the glBegin()-glEnd ()
operations from OpenGL 2.1, which do not belong in the core profile of OpenGL
4.3.

If your graphics card doesn’t support OpenGL 4.3 then the
program may compile but not run as the system is unable to provide the
context asked. What you might do in this case is thin the context by
replacing the first line above with glutInitContextVersion(3, 3), or even
glutInitContextVersion(2, 1), instead. Of course, then, programs using
later-generation calls will not run, but you should be fine early on in the book.

3. glutInitDisplayMode (GLUT_SINGLE | GLUT_RGBA) says that we’ll be wanting
an OpenGL context to support a single-buffered frame, each pixel having red,
green, blue and alpha values.

4. glutInitWindowSize (500, 500);
glutInitWindowPosition(100, 100);

as we have already seen, set the size of the OpenGL window and the location of
its top left corner on the computer screen.

5. glutCreateWindow("square.cpp") actually creates the OpenGL context and
its associated window with the specified string parameter as title.

6. glutDisplayFunc(drawScene) ;
glutReshapeFunc(resize) ;
glutKeyboardFunc (keyInput) ;

register the routines to call — so-called callback routines — when the OpenGL
window is to be drawn, when it is resized, and when keyboard input is received,
respectively.

7. glewExperimental = GL_TRUE;
glewInit();

initializes GLEW (the OpenGL Extension Wrangler Library) which handles
the loading of OpenGL extensions, with the switch set so that extensions
implemented even in pre-release drivers are exposed.

8. setup() invokes the initialization routine.

9. glutMainLoop begins the event-processing loop, calling registered callback
routines as needed. 51

Chapter 2

ON TO OPENGL AND

52

3D COMPUTER
GRAPHICS

“cgBook” — 2022/6/6 — 22:06 — page 52 — #T78

We have already seen that the only command in the initialization routine setup(),
namely, glClearColor(1.0, 1.0, 1.0, 0.0), specifies the clearing color of the
OpenGL window.

The callback routine to draw the OpenGL window is:

void drawScene(void)

{

glClear (GL_COLOR_BUFFER_BIT) ;

glColor3£ (0.0, 0.0, 0.0);

// Draw a polygon with specified vertices.
glBegin (GL_POLYGON) ;

glEnd();
glFlush();

}

The first command clears the OpenGL window to the specified clearing color, in other
words, paints in the background color. The next command glColor3f() sets the
foreground, or drawing, color, which is used to draw the polygon specified within the
glBegin()-glEnd () pair (we have already examined this polygon carefully). Finally,
glFlush() forces all the commands in queue to actually execute — emptying or flushing
the commands buffer as it were — which, in this case, means the polygon is drawn.

The callback routine when the OpenGL window is resized, and first created, is
void resize(int w, int h). The window manager supplies the width w and height
h of the resized OpenGL window (or, initial window, when it is first created) as
parameters to the resize routine.

The first command

glViewport(0, 0, w, h);

of square. cpp’s resize routine specifies the rectangular part of the OpenGL window
in which actual drawing is to take place; with the given parameters it is the entire
window. We’'ll be looking more carefully into glViewPort () and its applications in
the next chapter.

The next three commands

glMatrixMode (GL_.PROJECTION) ;
glLoadIdentity();
gl0rtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0);

activate the projection matrix stack, place the identity matrix at the top of this
stack, and then multiply the identity matrix by the matrix corresponding to the final
glOrtho() command. Don’t worry if all this about matrices doesn’t make much
sense now — the takeway that the third statement above sets up the viewing box of
square.cpp (as described in Section 2.2) is enough at this time. We’ll be learning
about OpenGL’s matrix stacks in Chapters 4 and 5.

The final two commands

glMatrixMode (GL_MODELVIEW) ;
glLoadIdentity();

of the resize routine activate the modelview matrix stack and place the identity matrix
at the top in readiness for modelview transformation commands in the drawing routine
— commands which move objects, of which there happen to be none in square. cpp.

The callback routine to handle ASCII keys is keyInput (unsigned char key, int
x, int y). When an ASCII key is pressed it is passed in the parameter char to
this callback routine, as is the location of the mouse in the parameters x and y. All
that keyInput of square.cpp does is terminate the program when the escape key is
pressed. In the next chapter we’ll see callback routines to handle non-ASCII keys, as
well as interaction via the mouse.

“cgBook” — 2022/6/6 — 22:06 — page 53 — #79

As the reader might well guess, the guts of an OpenGL program are in its drawing
routine. Interestingly, the initialization routine often pulls a fair load, too, because one
would want to locate there tasks that need to be done once at start-up, e.g., setting
up data structures. In fact, it’s a common beginner’s mistake to place initialization
chores in the drawing routine, as the latter is invoked repeatedly if there is animation,
leading to inefficiency.

The other routines, such as main() and the interactivity and reshape callbacks,
are simple to code and, in fact, can often be copied from one program to the next.

Another popular library for use with OpenGL in order to manage a
window and handle input events is GLFW [57], the name derived from “Graphics
Library Framework”, which can serve as an alternate to FreeGLUT. All our programs
use FreeGLUT. However, for those who have prior experience with GLEFW, or might
be curious, we include below a GLFW version of square. cpp.

Experiment 2.28. You will need to configure your environment to include GLEW
before running squareGLFW. cpp. How to do this is described in the comments at the
top of the program file. This program has the exact same functionality as square. cpp,
only with GLFW replacing FreeGLUT. Figure 2.62 is a screenshot. End

2.12 Summary, Notes and More Reading

)

In this chapter we began the study of 3D CG, looking at it through the “eyes’
of OpenGL. OpenGL itself was presented to the extent that the reader acquires
functional literacy in this particular API. The drawing primitives were probably the
most important part of the API’s vernacular.

We discovered as well how OpenGL functions as a state machine, attributes such
as color defining the current state. Moreover, we learned that quantifiable attribute
values, e.g., RGB color, are typically interpolated from the vertices of a primitive
throughout its interior. We saw that OpenGL clips whatever the programmer draws
to within a viewing volume, either a box or frustum.

Beyond acquaintance with the language, we were introduced as well to the synthetic-
camera model of 3D graphics, which OpenGL implements via two kinds of projection:
orthographic and perspective. This included insights into the world coordinate system,
the viewing volume — box or frustum — which is the stage in which all drawings are
made, the shoot-and-print rendering process to map a 3D scene to a 2D window, as
well as hidden surface removal. We made a first acquaintance as well with another
cornerstone of 3D graphics: the technique of simulating curved objects using straight
and flat primitives like line segments and triangles.

Historically, OpenGL evolved from SGI’s IRIS GL API, which popularized the
approach to creating 3D scenes by drawing objects in actual 3-space and then rendering
them to a 2D window by means of a synthetic camera. IRIS GL’s efficiently pipelined
architecture enabled high-speed rendering of animated 3D graphics and, consequently,
made possible as well real-time interactive 3D. The ensuing demand from application
developers for an open and portable (therefore, platform-independent) version of
their API spurred SGI to create the first OpenGL specification in 1992, as well as a
sample implementation. Soon after, the OpenGL ARB (Architecture Review Board),
a consortium composed of a few leading companies in the graphics industry, was
established to oversee the development of the API. Stewardship of the OpenGL
specification passed in 2006 to the Khronos Group, a member-funded industry
consortium dedicated to the creation of open-standard royalty-free API’s. (That
no one owns OpenGL is a good thing.) The canonical, and very useful, source for
information about OpenGL is its own home page [108].

Microsoft has a non-open Windows-specific 3D API — Direct3D [93, 146] — which is
popular among game programmers as it allows optimization for the pervasive Windows
platform. However, outside of the games industry, where it nonetheless competes with

Section 2.12
SUMMARY, NOTES AND
MORE READING

=1 squareGLFW.cpp - o X

Figure 2.62: Screenshot
of squareGLFW.cpp.

53

Chapter 2

ON TO OPENGL AND

54

3D COMPUTER
GRAPHICS

“cgBook” — 2022/6/6 — 22:06 — page 54 — #380

Direct3D, and leaving aside particular application domains with such high-quality
rendering requirements that ray tracers are preferred, by far the dominant graphics
APT is OpenGL. The beginning graphics programmer should keep in mind though
that recent versions of OpenGL and Direct3D are fairly alike in functionality — read
an interesting comparison in Wikipedia [26] — so migrating from one to the other is
not hard.

It’s safe to say that OpenGL is the de facto standard 3D graphics API. A primary
reason for this, other than the extremely well-thought-out design, is OpenGL’s
portability. It’s worth knowing as well that, despite its intended portability, OpenGL
can take advantage of platform-specific and card-specific capabilities via so-called
extensions, at the cost of clumsier code.

But wait, there’s more! A lighter version of OpenGL, namely, OpenGL ES (for
Embedded Systems), is to be found supporting mobile 3D apps on almost every
Android smartphone. And, WebGL, a derivation again of OpenGL, has become the
standard for 3D graphics on the web. We’ll learn WebGL ourselves in a later chapter.

Perhaps the best reason for OpenGL to be the API of choice for students of 3D
computer graphics is — and this is a consequence of its almost universal adoption by
the academic, engineering and scientific communities — the sheer volume of learning
resources available. Not least among these is the number of textbooks that teach
computer graphics with the help of OpenGL. Search amazon.com with the keywords
“computer graphics opengl” and you’'ll see what we mean. Angel [2], Buss [21], de Vries
[36], Govil-Pai [62], Hearn & Baker [71], Hill & Kelley [74] and McReynolds & Blythe
[96] are some introductions to computer graphics via OpenGL that the author has
learned much from.

Interestingly, an unofficial clone of OpenGL, Mesa 3D [97], which uses the same
syntax, was originally developed by Brian Paul for the Unix/X11 platform, but there
are ports now to other platforms as well.

In case the reader prefers not to be distracted by code, here are a few API-
independent introductions: Akenine-Méller, Haines & Hoffman [1], Foley et al. [76, 48],
Marschner & Shirley [95], Watt [152], Xiang [160] and Xiang & Plastock [161]. Keeping
different books handy in the beginning is a good idea as, often, when you are having
trouble grasping one author’s exposition of a topic, turning to another for help with
that matter may clear the way.

With regard to the code which comes with this book, we don’t make much use of
OpenGL-defined data types, which are prefixed with GL, e.g., GLsizei, GLint, etc.,
though the red book advocates doing so in order to avoid type mismatch issues when
porting. Fortunately, we have not yet encountered a problem in any implementation
of OpenGL that we’ve tried.

In addition to the code which comes with this book, the reader should try to
acquire OpenGL programs from as many other sources as possible, as an efficient way
to learn the language — any language as a matter of fact — is by modifying live code.
There are numerous resources on the web for code, as well as tutorials, 3D models and
texture images. The OpenGL site [108] has pointers to several coding tutorials. The
book by Wright, Lipchak & Haemel [134] is specifically about programming OpenGL
and has numerous example programs. The red book comes with example code as well.

Hard-earned wisdom: Write experiments of your own to clarify ideas. Even if you
are sure in your mind that you understand something, do write a few lines of code in
verification. As the author has repeatedly been, you too might be surprised.

