
i
i

i
i

i
i

i
i

Chapter 19

Fixed-Functionality

Pipelines

global_settings{radiosity{}}

at the top to enable radiosity computation with default settings. The
difference is significant, is it not?

Figure 19.24(a) is the output without radiosity (or see it separately as the
image file sphereInBoxPOV.jpg in our Code folder), while Figure 19.24(b)
is the output with radiosity (sphereInBoxPOVWithRadiosity.jpg in Code).
There clearly is much more light going around inside the box in the latter
rendering. End

Exercise 19.12. If the lighting in a scene changes, then which steps of the
radiosity algorithm need to be redone? How about if the geometry changes,
e.g., with a ball looping in and out of a torus?

19.4 BSP Trees

The BSP (Binary Space Partitioning) tree algorithm for hidden surface
removal, invented by Fuchs, Kedem and Naylor [47], is an implementation
of the so-called painter’s method . The painter’s method draws objects
from back to front toward the eye, each new object possibly drawn over
earlier ones, which automatically engenders hidden surface removal. See
Figure 19.25.

Figure 19.25: The painter’s method draws the scene “toward” the eye: first the house,
then the car and, finally, the tree.

A

B

C

e

P1

P2

Figure 19.26: Vertex A
of P1 is closer to eye e
than vertex B of P2, while
B is closer than C of P1.

How does one implement the painter’s method in a scene specified as
a set of polygons? One would obviously like to sort the polygons relative
to the eye e, so that those farther away appear earlier in the sorted order
than nearer ones, and then draw them in this order. The first problem that
one runs into along this line of thinking is determining which of two given
polygons, say P1 and P2, is “farther from” e. Measuring the distance from e
to vertices of P1 and P2 is not a workable approach, as there may be one
vertex of P1 that is closer to e than some vertex of P2, while another vertex
of P1 is farther from e than one of P2, e.g., as in Figure 19.26.

The figure itself suggests a possible solution. If one imagines P1 and
P2 as vertical rectangles lying on parallel planes p1 and p2, respectively,
then evidently P2 lies behind p1 in that P2 lies on the side of p1 opposite714

ait
Text Box
Extract from Computer Graphics through OpenGL: From Theory to Experiments by Sumanta Guha, First Edition

i
i

i
i

i
i

i
i

Section 19.4

BSP Trees

the eye (i.e., in the half-space of p1 not containing the eye). Clearly, then,
P2 should be taken to be farther than P1 and drawn before P1, because it
cannot obscure P1. Unfortunately, for arbitrary polygons P1 and P2, it may
not be the case that the plane of either separates the other from the eye, as,
e.g., in Figure 19.27, where the plane of each intersects the other.

Suppose, for the moment, that a scene comprising a set S of polygons
does, in fact, contain at least one, say P , such that every polygon of S, other
than P , lies entirely on one side or the other of the plane p containing P
(i.e., each polygon of S, other than P , lies entirely in one or other half-space
of p). In this case, we say that P splits S. Suppose, as well, that the eye e
does not lie on p but to one side as well. See Figure 19.28, where the polygon
P splits the set S into two, S′ and S′′, and the eye e lies on the same side
of p as S′′. Clearly, then, a legitimate drawing order has the polygons of
S′ first (drawn in some appropriate order among themselves), then P and,
finally, the polygons of S′′ (again in some appropriate order).

P1

P2

Figure 19.27: Each of P1

and P2 intersects the plane
containing the other – the
planes themselves are not
drawn.

e

P

p

S’

S”

P3
P1

P2

P4
P5

Figure 19.28: The polygon P splits the set of six polygons. P ’s plane p is drawn a light
gray. The three to one side of p, viz., P1, P2 and P3, form the subset S′, while the two,
P4 and P5, on the other form S′′. The eye e lies on the same side of p as S′′.

If the equation of the plane p is ax+ by+ cz+ d = 0, then the sign of the
quantity ax+ by + cz + d, positive or negative, determines the side of p that
a point [x y z]T lies. For the sake of compact notation we’ll denote by h a
function whose sign determines the side of p that a primitive lies (assuming,
of course, that the primitive does lie wholly to one side or the other). For
example, h(e) and h(P1) have opposite signs in Figure 19.28.

Below, then, is a first cut at an algorithm to draw the polygons in S
on the assumption that a splitting polygon P of S can indeed be found.
Moreover, the recursive draw() calls are based on the premise that every
time a subset of S is partitioned by a splitting polygon into two smaller
subsets, a splitting polygon can again be found in either (provided the size
of the subset is greater than 1; otherwise, of course, there is no need to 715

i
i

i
i

i
i

i
i

Chapter 19

Fixed-Functionality

Pipelines

partition further). In other words, we suppose that we can keep partitioning
by means of splitting polygons until we are down to singletons.

Drawing Algorithm Version 1

void draw(S, e) // Input S, a set of polygons, and e, eye location.

{
if (|S| == 0) ; // Nothing to do.

else if (|S| == 1)

{
P = the one member of S;

draw(P);

}
else

{
P = a splitting polygon of S; // Can be found by assumption.

S’ = polygons Q of S - P such that h(Q) > 0;

S’’ = polygons Q of S - P such that h(Q) < 0;

if (h(e) > 0)

{
draw(S’’, e);

draw(P);

draw(S’, e):

}
else // h(e) < 0

{
draw(S’, e);

draw(P);

draw(S’’, e):

}
}

}

In the scenario of the preceding algorithm, the splitting polygons can
be naturally arranged in the form of a binary tree, called a BSP tree:
the children (if they exist) of each splitting polygon P being the splitting
polygons of the two subsets that result from partitioning by P . A BSP tree
node corresponding to a particular splitting polygon stores its data via a
pointer to the polygon itself in the list of scene primitives, in addition to
the obligatory left and right child pointers. Figure 19.29 shows an example
of a set S of seven polygons lying on parallel planes and a corresponding
BSP tree (only one pointer has been drawn from a tree node to a polygon).

Observe that the BSP tree of a given set of polygons need not be unique,
but depends on the splitting polygon selected from each subset (in the
situation of Figure 19.29 any member of a subset of S splits it and we have
been intentionally arbitrary in making choices). Moreover, the BSP tree,
once constructed, is a static data structure – provided the scene doesn’t
change – independent of the eye. It can, therefore, be pre-computed. It’s716

i
i

i
i

i
i

i
i

Section 19.4

BSP Trees

size is linear in the number of polygons.

(a) (b)

P4
P4

P5

P5

P6
P6

P7 P7

P3

P3

P2

P2

P1

P1

Figure 19.29: (a) Seven polygons on parallel planes (b) A corresponding BSP tree
(only one polygon pointer drawn to avoid clutter).

Here is recursive pseudo-code to construct a BSP tree for an input set S
of polygons, keeping the earlier assumption that splitting polygons can be
repeatedly found:

BSP Tree Construction Algorithm Version 1

pointer makeBSPTree(S) // Input S, a set of polygons.

{
allocate empty BSP tree node root;

if (|S| == 1)

{
P = the one member of S;

root.value = P;

root.left_child = NULL;

root.right_child = NULL;

}
else

{
P = a splitting polygon in S; // Can be found by assumption.

root.value = P;

S’ = polygons Q of S - P such that h(Q) > 0;

S’’ = polygons Q of S - P such that h(Q) < 0;

if (|S’| == 0) root.left_child = NULL;

else root.left_child = makeBSPTree(S’);

if (|S’’| == 0) root.right_child = NULL;

else root.right_child = makeBSPTree(S’’);

}
717

i
i

i
i

i
i

i
i

Chapter 19

Fixed-Functionality

Pipelines

return pointer to root;

}

Returning to the question of drawing, we ask the reader in the next
exercise to devise an algorithm to draw a scene by choosing splitting polygons
given a BSP tree.

Exercise 19.13. Given input a pointer T to the root of a BSP tree
constructed for the set S of polygons comprising a scene – assume that we
were indeed able to split successive subsets until the tree was complete –
and the location of the eye e, write a routine draw(T, e) to draw the scene
by modifying Drawing Algorithm Version 1. For future reference, call your
routine the BSP Tree Based Drawing Algorithm.

Exercise 19.14. What is the complexity of the BSP Tree Based Drawing
Algorithm – does it depend on the height of the BSP tree or its number of
nodes?
Hint : The drawing algorithm traverses the BSP tree, visiting each node
once.

Exercise 19.15. In OpenGL, for instance, not only is the location of the
camera given, but the direction in which it’s pointed and its up direction as
well (think gluLookAt()). Where would these come into play in a drawing
routine which uses a BSP tree?
Hint : They are needed at the time of drawing a polygon (e.g., draw(P) in
Version 1 of the drawing algorithm) and not when traversing the BSP tree.
The reason is that if, say, the plane of a polygon P1 separates the eye e from
another polygon P2, then P2 cannot obscure P1 no matter how a camera at
e is pointed or its top aligned, implying that P2 can be drawn ahead of P1

regardless of these parameters.

A

C

X
Y

P

p B

Q

Figure 19.30: Subdiv-
iding Q by P .

We come now to the final piece of the puzzle. How do we assure the
existence of a splitting polygon in each subset as we successively partition
them? Answer : We cannot. Instead, we’ll resort to some amount of violence,
if need be, to members of the subset in order to be able to extract a splitting
polygon. The idea is actually simple. Given a set S of polygons, choose
one (arbitrarily), say P . If another polygon Q of S intersects the plane p of
P , then subdivide Q into subpolygons that do not intersect p (mind that
touching is not considered intersecting in the realm of BSP trees). We’ll call
this the process of subdivision of Q by P .

For example, Q = ABC in Figure 19.30, which intersects the plane p
of P in the straight segment XY , can be subdivided into the quadrilateral
AXY C and the triangle Y XB. The subdivision of Q by P need not be
unique as long as the outcome is a set of polygons that don’t intersect p. For
example, if drawing primitives are triangles, as in OpenGL, the subdivision
of Q in the figure into the three triangles AXC, CXY and Y XB might be
preferable. If Q does not intersect p, then its subdivision by P is, of course,
a null process.718

i
i

i
i

i
i

i
i

Section 19.4

BSP Trees

Accordingly, if every polygon of the set S, other than P , is subdivided
by P , then the result is a refinement of S, in that each polygon in this
collection is a subpolygon of some polygon of S. Evidently, from the way it
was made, this refinement is split by P . From the point of view of drawing
the originally specified scene, there is no loss in refining, because the union
of the polygons in the refinement is exactly the same as that of those in the
original set. It’s just that the number of polygons has increased. Care must
be taken, however, that the new polygons are consistent with the ones from
which they are derived with respect to orientation, normal direction and so
forth.

We obtain now our final version of the BSP tree construction algorithm,
which makes no assumption on the polygon set S, by a simple modification
of the first version to include refinement.

BSP Tree Construction Algorithm Version 2

pointer makeBSPTree(S) // Input S, a set of polygons.

{
allocate empty BSP tree node root;

if (|S| == 1)

{
P = the one member of S;

root.value = P;

root.left_child = NULL;

root.right_child = NULL;

}
else

{
P = a random polygon in S;

root.value = P;

S = refinement of S obtained by subdividing by P each

polygon of S other than P;

S’ = polygons Q of S - P such that h(Q) > 0;

S’’ = polygons Q of S - P such that h(Q) < 0;

if (|S’| == 0) root.left_child = NULL;

else root.left_child = makeBSPTree(S’);

if (|S’’| == 0) root.right_child = NULL;

else root.right_child = makeBSPTree(S’’);

}

return pointer to root;

}

This algorithm, together with the BSP Tree Based Drawing Algorithm,
answer to Exercise 19.13, completes a routine for drawing with hidden surface
removal.

Exercise 19.16. Construct a BSP tree for the “cycle” of three triangles 719

i
i

i
i

i
i

i
i

Chapter 19

Fixed-Functionality

Pipelines

disposed as in Figure 19.31, each intersecting the plane of the other two,
subdividing as necessary.

P1

P3

P2

Figure 19.31: A “cycle”
of triangles.

Remark 19.8. An implementation of BSP trees would have to take into
account additional practical issues that we have not discussed, e.g., what
to do if the eye e lies on the plane of a polygon in the tree (we have been
tacitly assuming that it always lies to a side) and how to prevent slivers
from arising when subdividing a polygon (e.g., if B is very close to p in
Figure 19.30, though still on the side opposite to that of A and C, then the
triangle Y XB is undesirably long and narrow).

Remark 19.9. The complexity of the BSP tree returned by the second
version of the construction algorithm depends on the choice of P used to
subdivide the other members of S. However, the complexity of determining
an optimal sequence of subdividing polygons is generally not worth the
improvement in the tree itself. A random choice of the subdividing polygon
seems to work best in practice.

Remark 19.10. BSP trees were used extensively for visibility determination,
particularly in flight simulators, in the 60’s and 70’s (flight simulators
were the killer app for high-end real-time rendering systems at that time).
However, through the 1980’s, BSP trees continued to be superseded by the
simple-minded z-buffer by virtue of the latter’s sheer speed, derived from
being implemented on dedicated hardware (the first graphics cards were
released in 1981).

However, the space-partitioning technique that BSP trees implement has
numerous other applications: the frustum culling technique we studied in
Chapter 6 is an example.

19.5 Summary, Notes and More Reading

In this chapter we went into particularly gory detail about the synthetic-
camera pipeline that OpenGL implements, the fixed-functionality variant
in particular. The reader should now be in a position to even implement a
barebones version of her own. The synthetic-camera pipeline is based on a
local illumination model. We were introduced as well to two global models,
that of ray tracing and radiosity, and saw how much more realism they afford
than the synthetic camera, though at hugely more computation cost. We
also learned about BSP trees, a classical technique which integrates hidden
surface removal into the rendering process.

The seminal work on ray tracing was by Appel [4] and Whitted [143], and
on radiosity by Goral [54]. The book by Jim Blinn [16], a CG pioneer, has
several insightful articles, written in his particularly entertaining style, on
various pipeline-related topics. Segal-Akeley [123] is a must-read high-level
overview of the OpenGL pipeline written by two members of the original720

