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|CHAPTER 1 8

B-Spline

the dominant class of primitives used in freeform design nowadays. As in

the preceding chapter on Bézier theory, we’ll restrict ourselves here to the
polynomial version, reserving the more general rational class of NURBS (Non-Uniform
Rational B-Spline) primitives for Chapter 20, as an application of projective spaces,
which are the natural setting for these primitives.

Almost all 3D modelers support NURBS primitives — and so, of course, their
polynomial subclass as well —in a WYSIWYG design environment. In such a setting,
the user can get by merely pushing control points around, with little understanding
of theory. OpenGL, on the other hand, provides an interface at a much lower level.
In fact, there is almost a one-to-one correspondence between NURBS theory and
OpenGL syntax. Consequently, some knowledge at least of the former is required in
order to use the latter.

Unfortunately, as NURBS theory is more complex than Bézier, there really is no
use-now-learn-later approach. This is the reason we did not introduce NURBS, or
even its polynomial subclass, in the earlier chapter on drawing, as we did polynomial
Bézier primitives. True, the lack of shortcuts and a fancy interface will be seen as
drawbacks by those who care only about design and not so much about what is under
the hood. On the other hand, OpenGL’s minimalist setting is ideal for the purpose of
grasping the underlying theory.

Our account of B-spline theory begins in Section 18.1 with an analysis of the
weakness of Bézier primitives, motivating the progression to B-splines as a search,
in fact, for better blending functions. The investigation of the B-spline primitives
themselves begins with curves in Section 18.2, setting the stage with so-called knot
vectors in anticipation of new blending functions that are polynomial in knot intervals.
In subsections 18.2.1-18.2.3, we go from (uniform) first-order to quadratic B-spline
curves, applying an intuitive “break-and-make” procedure to increase the degree of
the spline functions. The reader is asked to apply this procedure herself in 18.2.4 to
fill in the details for cubic B-splines. A significant generalization is made in 18.2.5,
not only by extending the theory to B-splines of arbitrary order, but by allowing
the knot vector to be non-uniform as well. We’ll see the utility of non-uniform knot
vectors, particularly of repeated knots which empower the designer with the best of
both worlds, Bézier and B-spline. From B-spline curves to surfaces in Section 18.3 is
exactly the same process as from Bézier curves to surfaces.

Finally, we come to code in Section 18.4, particularly, the syntax of OpenGL
NURBS drawing primitives, though in this chapter we go only as far as their polynomial
functionality. Subsections 18.4.1 and 18.4.2 discuss drawing B-spline curves and
surfaces, respectively. We describe how to light and texture a B-spline surface in
18.4.3. The useful technique of trimming a B-spline surface is described in 18.4.4.

O ur aim this chapter is to master the theory underpinning B-spline primitives,
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Figure 18.1: (a)
Bernstein polynomials of
degree 3:

Bos(u) = (1 —u)?,
B13(u) = 3(1 — u)?u,

Bs 3(u) = 3(1 — u)u?,

B3 3(u) = u® (b) A cubic
Bézier curve.

Figure 18.2: Mesh of
Boris’s head (courtesy of
Sateesh Malla at
www.sateeshmalla.com).
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Section 18.5, with notes and suggestions for future reading, concludes the chapter.

18.1 Problems with Bézier Primitives: Motivating
B-Splines

Bézier curves and surfaces, the topics of the previous chapter, are easy to use and
powerful enough to create complex designs. However, they suffer from two weaknesses:

1. Lack of local control.

Observe that the blending function of every control point of a Bézier curve is
non-zero over the entire open parameter interval (0,1); in other words, every
control point has non-zero weight (or attraction, or pull) at every point of the
curve, except, possibly, the endpoints. For example, Figure 18.1(a) shows the
blending functions of a cubic Bézier curve, which are, of course, the Bernstein
polynomials of degree three.

This makes modifying a Bézier curve difficult: moving any one control point
alters the entire curve, not just near the control point. Albeit points on the
curve far from the relocated control point move little because its weight is small
at distant points, nevertheless, there is change. Moving control point P; in
Figure 18.1(b), for example, from a reading of its blending function Bj 3(u) in
Figure 18.1(a) maximally affects the curve in the vicinity of ¢(0.33), but all
points on the curve, except for the endpoints, are altered to some extent. E.g.,
moving P; would cause the curve to twitch even near Ps, which is far from P;.

The situation for Bézier surfaces is similar, as each control point has non-zero
weight at every point of the surface, except, possibly, the corners.

Typically, in designing a complex object with numerous control points a designer
would prefer to be able to modify parts of the object independently, in other
words, have local control, which in turn would necessitate restricting each control
point to its own limited “region of influence”. For example, in arranging Boris’s
smirk — see Figure 18.2 — the designer may want to leave his nose and eyes
exactly as they are.

2. The degree increases with the number of control points.

The Bézier curve c(u) approximating n+ 1 control points is polynomial of degree
n in . Evaluating a high-degree polynomial is expensive and repeated products
lead to numerical instability. Complex curves, therefore, with multiple control
points present a computational problem. And ditto for surfaces.

What to do about these problems? First, let’s step back a bit to take the following
abstract view of Bézier curves: a Bézier curve is the sum

c(u) = fo(w)Po+ fr(w)Py + ...+ fu(w)P,  (0<u<1) (18.1)

of its control points P; weighted by blending functions f; which happen to be Bernstein
polynomials. There’s no reason they have to be Bernstein polynomials, provided
that the resulting curve ¢ — maybe no longer Bézier — does a satisfactory job of
approximating the control points. The plan then is to try and invent new blending
functions which, hopefully, alleviate the Bézier difficulties.

Before proceeding, here’s a bit of useful terminology: if a function f, defined on the
interval domain [a, b], is non-zero everywhere inside the subinterval [a’, b'], excepting
possibly its endpoints a’ and ', and zero on the rest of [a, b], then it is said to have
support in [a’, V']. Figure 18.3(a) depicts a function f;(u) defined on [0, 1] with support
in the subinterval [a’, b'].
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Figure 18.3: (a) Function f; defined on [0, 1] has support in [a/,b’] (b) Moving P;, with associated
blending function f;, changes ¢ only between c(a’) and c(b’).

Eixercise 18.1. If the blending function f; of control point P; in expression (18.1)
has support in the proper subinterval [a’, V'] of the parameter interval [0, 1], then show
that moving P; changes the arc of the approximating curve ¢ only between ¢(a’) and
c(b'). See Figure 18.3(b).

Eixercise 18.2. Prove that the ith Bernstein polynomial of degree n for every 1,
0 < i < n, has support in the entire parameter interval [0, 1] (keep in mind that the
behavior of the polynomial outside of [0,1] is of no interest).

From the preceding two exercises, it seems, then, that the first problem with Bézier
curves mentioned above arises because the blending function of every control point
has support in the entire parameter interval [0,1]. A solution, therefore, would be to
find blending functions each having support in only part of that interval.

Moreover, the second problem would be solved if the degree of the blending
functions could be decoupled from the number of control points, so that increasing the
latter did not necessarily raise the former.

So, now that we have an idea of what we want, let’s see what we can find. Suppose,
to begin with, that we ask for blending functions all quadratic, no matter the number
of control points. Further, to obtain local control, then, we seek quadratics with
limited support — whose graphs resemble that of f; in Figure 18.3(a). Sadly, this is a
hopeless task because a quadratic is zero only at its at most two roots, not on any
interval stretch like that between 0 and a’, or b’ and 1. But, look again at f;. Except
for the two straight zero parts at either end, the graph of f; does resemble somewhat
an upside-down parabola — see the graph of the parabola f(u) = u? in Figure 18.4(a).

fu)=—u?+1 1

fiw =1

u

fluy=0 0 fl) =0
2 -l 0 1 2
(a) (b)

Figure 18.4: (a) Parabola (b) Three-part function: one upside-down parabola and two straight.

Note: Curves drawn in this chapter are fairly accurate sketches, but not necessarily
exact plots of their equations.

Here, then, is a drastic solution. Let’s make a blending function f like f; by
assembling it from three parts — one quadratic (an upside-down parabola) and two
straight zero — as follows:

0, —2<u<-1

fluy=4 —u?>+1, -1<u<1 -
0, 1<u<?2 559
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Figure 18.5: The right
wing of the parabola
f(u) = u? meeting the
straight left half of the
xz-axis smoothly at the
origin.
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There’s no law that says that a formula has to be one line! So the specification of
f is fine. Figure 18.4(b) shows its graph. We seem to be headed in the right direction.
We have a blending function which is at most quadratic and which has support in
[—1,1], just half of its whole domain [—2,2].

Note: 1If the reader is wondering about the new parameter interval [—2,2], keep in
mind that there’s nothing special about the parameter interval [0,1] we use most
often, other than that it’s convenient to write. Parameter intervals can be any [a, ],
with @ < b. In the case above, [—2, 2] helps avoid fractions in the formula for f.

The corners (C*-discontinuities, to be precise) at u = 4-1, where the straight parts
of f meet the parabolic, are undesirable though, because discontinuities in the blending
function will carry over to discontinuities in the approximating curve employing such
a function. It’ll be nice to be rid of them. How do we get a parabolic part to join
a straight part without making a corner? Oddly enough, the parabola f(u) = u? in
Figure 18.4(a) itself suggests a solution. Consider the part of this parabola to the
right of the y-axis and the (straight) part of the z-axis to the left of the y-axis: they
meet smoothly at the origin! See Figure 18.5.

So here’s the next draft. For v < 0 and w > 4, define f(u) to be 0, giving two long
straight parts; define f(u) = u? between 0 and 1; and, f(u) = (u — 4)2 between 3 and
4. See the green curves in Figure 18.6. Particularly, f(u) = v? in [0,1] is part of the
right wing of the parabola of Figure 18.4(a), while f(u) = (u — 4)2 in [3, 4] from the
left wing of the same parabola (but shifted 4 units to the right). The two quadratics
meet the straight parts smoothly, so that’s taken care of, but there’s a piece missing
in between (pretend you don’t see the black curve!). Now, if we could only find a
quadratic to sit smoothly atop the two side quadratics and cap the gap.

It turns out that a fairly intuitive choice works: drag f(u) = u? two units to
the right, flip it upside down and then raise it two units. The equation is f(u) =
—(u—2)%+2, which in [1, 3] gives the black curve in Figure 18.6. We leave verification
to the reader in the next two exercises.

, S =2y +2
1 (L, 1 3.1
o =1 S = (-4
f=0_0 fw=0
0 1 2 3 4

Figure 18.6: Five-part function: three parabolic and two straight parts. Joints are black points.

Eixercise 18.3. Show that the curve f(u) = —(u — 2) + 2 indeed meets f(u) = u?
at (1,1) and f(u) = (u—4)% at (3,1).

FEixercise 18.4. Show that at each of the four joints (0,0), (1,1), (3,1) and (4,0) of
the five-part function depicted in Figure 18.6 the tangent lines of the curves on either
side are equal. Therefore, there is no C'-discontinuity at a joint and the function is
C'-continuous everywhere.

Part answer: At (1,1), where u = 1, the tangent on the left is from f(u) = u? and
on the right from f(u) = —(u — 2)? + 2. Now, +-u? = 2u, which is 2 at u = 1, and
L (—(u—2)2+2) = —2(u—2), which is also 2 at u = 1, so, indeed, the tangent lines
on either side of the joint (1, 1) are equal.



For the record, here’s the 5-line formula specifying f:

0, ©u<0
u?, 0<u<l
flwy=4{ —(u—22+2, 1<u<3 (18.2)
(u—4)2, 3<u<4
0, 4<u

f has support in [0,4] and, from the preceding exercise, is C'*-continuous throughout.
Moreover, if its parameter interval is chosen to be an interval larger than [0,4], e.g.,
[~2, 6], then we have indeed a C'-continuous blending function with limited support.

The moral then is to look for blending functions among the class of piecewise
polynomial functions — a function is piecewise polynomial if its domain can be split
into subintervals in each of which it’s polynomial. For example, f above is composed
of five polynomial pieces. From a computational point of view, evaluating a piecewise
polynomial is not much harder than evaluating a polynomial. If one thinks in terms
of C or C++ code, then there is simply an extra if-else ladder to determine the
appropriate subinterval and corresponding polynomial.

The piecewise polynomials to be used as blending functions must be chosen carefully
though. For example, looking back at Propositions 17.1 and 17.3 of the last chapter,
it’s desirable for the set of blending functions to form a partition of unity over the
parameter space. Good things happen then: (a) points on the curve (or surface) are
convex combinations of its control points, so the whole lies in the convex hull of its
control points and (b) affine invariance.

Writing down all the properties we want, then, we put together a Wish List for
blending functions. We ask that they

(a) be at least a C'-continuous piecewise polynomial,

(b) be of a low degree independent of the number of control points,
(¢) each have support in only part of the parameter space, and,

(d) together form a partition of unity over the parameter space.

We're led to B-splines.

18.2 B-Spline Curves

Let’s set the stage for the B-spline blending functions (or, as they are also called,

B-spline functions, or B-splines, or spline functions) that we are going to define.

Each will be piecewise polynomial, in other words, polynomial on subintervals. In

anticipation, then, let’s fix a particular parameter space and chop it up into subintervals.

For convenience now, we choose [0,7], where r is some positive integer, and its 7
subintervals to be the equally sized

[0,1], [1,2], ..., [r—1,7]
See Figure 18.7. The sequence
{0,1,...,7}

of successive interval endpoints is called the knot vector and the endpoints 0,1,... 7
themselves, knots. Each subinterval [i,i + 1], for 0 < ¢ < — 1, is a knot interval. We
expect to define blending functions which are polynomial in each knot interval with
(hopefully, well-behaved) joints at knot values.

A knot vector as above with equally spaced knots is called a uniform
knot vector. Later in this chapter we’ll see non-uniform knot vectors as well.

The “B” in B-splines, the name given these functions by Schoenberg
[129], a pioneer in their use, comes from “basis”.

Section 18.2
B-SPLINE CURVES

012 - P

Figure 18.7: Parameter
space [0, 7] with
uniformly-spaced knots.
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Figure 18.9: Screenshot
of bSplines.cpp at first

order.
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18.2.1 First-Order B-Splines

We'll start at the lowest level possible and define the B-splines of degree 0 by means
of constant functions. There are r B-splines of degree 0, each equal to 1 on one knot
interval and 0 outside it. Precisely, the ith B-spline of degree 0, for 0 <i <r —1,
denoted N; 1, is defined as follows.

When 7 = 0:

1, 0<u<l
No.(u) = { 0, otherwise (18.3)

When 1 <i<r—1:

1, i<u<i+l
Nia(u) { 0, otherwise (18.4)
NUJ Nl;l ]\/r-l,l
I— It o
0 1 2 r=1 r 0 1 2 r=1 r
(a) (b)

Figure 18.8: First-order B-splines: (a) No,1 (b) Non-zero parts of N; 1, 0 <¢ <7 —1,
distinguished by alternate green and black colors.

In other words, each N;; is 1 on the knot interval [i,i + 1], except, possibly, at
the endpoints, and 0 outside it; so, N; 1 has support in [4,7 4 1]. Figure 18.8(a) shows
the graph of Ny 1 over the entire parameter space [0, r|, while Figure 18.8(b) only the
non-zero parts of the graphs of N; 1, for 0 <4 <7 — 1. The niggling technicality — see
the first line of the two equations above — of having to define Ny ; to be 1 on a closed
interval, while the other N;; are equal to 1 on a half-open interval, is unavoidable.
For, we want the r B-splines of degree 0 to form together a partition of unity over
[0, 7], so no two are allowed to be 1 at the same point.

Experiment 18.1. Run bSplines.cpp, which shows the non-zero parts of the spline
functions from first order to cubic over the uniformly spaced knot vector

[07 17 27 37 47 57 67 75 8}

Press the up/down arrow keys to choose the order. Figure 18.9 is a screenshot of the
first order. The knot values can be changed as well, but there’s no need to now. Fnd

B-splines of degree 0 are commonly called first-order B-splines. If the knot vector
is uniform, as above, they are called uniform first-order B-splines.

Interestingly, as the reader may easily verify, all items on the Wish List at the end
of Section 18.1 are fulfilled by the first-order B-splines, except for C'-continuity, where,
obviously, they fail badly because the N;; are not even continuous (i.e., not even C°-
continuous). As we see next, expectedly this deficiency carries over to approximating
curves made from first-order B-splines as well.



First-Order B-Spline Curves

A first-order B-spline approximation of r control points Py, Py, ..., P._1 is called a
first order B-spline curve. This is the curve ¢ obtained from applying the first-order
B-splines as blending functions to these control points, namely,

0<u<r) (18.5)

What sort of a curve is ¢? Well, one would be hard pressed to call ¢ a curve in the first
place! Applying the definitions of N; ; from Equations (18.3)-(18.4) to Equation (18.5)
above, one sees that c is stationary at Py for u from 0 to 1. When u crosses 1, ¢
jumps to Py, staying stationary again till v crosses 2, when ¢ jumps to P, and so on.
The graph of ¢ is then just the collection of its own control points! See Figure 18.10.
Obviously, if there are even two distinct control points then ¢ is not C?. Clearly, we’ll
have to move to higher orders of B-splines for satisfaction.

First-order B-Spline Properties

However, before leaving the first order, here are a few of their properties for future
reference:

1. Each N;; is piecewise polynomial, consisting of at most three pieces, each of
which is constant.

2. N; 1 has support in the single knot interval [i,7 + 1].

3. Each N;; is not C° only at the endpoints of its supporting interval; elsewhere,
it’s C*°. In other words, it’s smooth — remember from Definition 10.7 that C'*°
is also called smooth — apart from its joints.

4. Together, the N;; form a partition of unity over the parameter space [0,7].

5. Except for No 1, the N;; are translates of one another, i.e., the graph of one is a
translate of that of another. This is a consequence of the knots being uniformly
spaced.

6. A first-order B-spline approximation is, generally, not even C©.

18.2.2 Linear B-Splines

The clear problem with first-order B-splines is that their polynomial degree 0 is too

low, allowing little flexibility in shape. Straight and horizontal is all that they can be.

Let’s go one higher to degree 1. We’ll do this in a particular way which will be easy
to generalize down the road.
The trivial formula

l=u+(-u+1) (18.6)

allows one to “break” each B-spline N; 1, of degree 0, into two functions N} and N},
of degree 1. For example, Ny 1 breaks into N ; and Nj ;, where

0 _Ju, 0<u<1
No.y (u) _{ 0, otherwise (18.7)
1 B —u+1, 0<u<l
and  No,y(u) = { 0, otherwise (18.8)
the two obviously adding to give back Ny 1, viz.,
No.i(u) = Ngy(u) + Ng  (u) (18.9)

Section 18.2
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Figure 18.10:
First-order B-spline
approximation — the
“curve” consists of its
control points.
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Ni1, when i > 0, can likewise be broken into N, and N}, where

0 CJu—d, i<u<i+1
N (u) = { 0, otherwise (18.10)

—u+i+1, i<u<i+l1
and N}y (u) = { 0, otherwise

which actually invokes an i-shift of (18.6), namely, 1 = (u —4) + (—u+ ¢+ 1). And,
again

(18.11)

Nia(u) = NPy (u) + N}y (u) (18.12)

Figure 18.11 shows the (non-zero pieces of the) two parts of each first-order B-spline.
For obvious reasons, we call the Ngls “up” and the N};s “down”. The up parts
are all left or right translates of one another, as are the down parts, except that the
technicality that their values at the left end of the knot interval [0, 1] are different
from those at the left end of other knot intervals persists from first-order.

1 . NOI Nl 1 ]vr—l.l

Ny, 1 / /

Lo / /

/ sl /
/ */ /
/ /% /

/ /- /

Inf0 / /
/N 0,1 / /

0 1 2 r—1 r

Figure 18.11: First-order B-splines each broken into an up part (dashed) NE1 and a down part
(dotted) Nil_l. Successive N; 1’s are distinguished by color.

This is important! For future reference, think of what we have just
done as the following: each IV;; is broken into two new functions over its support,
one obtained from multiplying N; 1 by a straight-line function increasing from 0 to
1 from the left end of its support to the right (namely, v — 4), while the other from
multiplying it by a straight-line function decreasing from 1 to 0 over the same interval
(namely, —u + ¢ + 1). Because (u — i) + (—u + i+ 1) = 1, the two new functions add
to give back the one that was broken. And, of course, multiplication by such degree-1
functions causes the degree of the new functions to rise by 1 (in this case, from the
degree 0 of N; ; to degree 1 of NP, and N}).

Equations (18.9) and (18.12) evidently guarantee that N, and N}, for 0 <i <
r — 1, together form a partition of unity, because the N; 1, 0 < ¢ < r —1, do. However,
there are 27 of the former, which is twice as many as we need to blend r control points.
What to do? Figure 18.11, in fact, suggests a way to pair them up nicely — join each
up part to the following down part! Accordingly, define the second-order B-splines (or
linear B-splines), for 0 < i <r — 2, as follows:

0, u<i
u—1, (<u<i+1
—u+i+2, i+1<u<i+?2
0, 1+2<u

Nigz(u) = NPy (w) + Nipy g (u) = (18.13)

Figure 18.12 shows the non-zero parts of the linear B-splines N; 2, 0 <4 < r—2, on the
domain [0,7]. See the magic: pairing has removed all C%-discontinuities because each
linear B-splines drops to zero at the ends of its support, so is continuous everywhere.

FEixercise 18.5. Verify that the multi-part formula above for N; 5(u) indeed follows
from joining up and down parts (using the equations for Ni(fl and Ni{l given earlier).



0 1 2 3 4 r—2 r—1 r

I
New parameter space

Figure 18.12: Non-zero parts of linear B-splines. Each is an inverted V. Successive ones are
distinguished by color. The down part in the first knot interval and the up part in the last are
discarded. The new (truncated) parameter space is [1,r — 1].

Experiment 18.2. Run again bSplines.cpp and select the linear B-splines over
the knot vector
[0,1,2,3,4,5,6,7,8]

Figure 18.13 is a screenshot. End

The technicality of the IV; 1 not being all of the same value at the left
endpoint of a supporting interval is now gone. The definition of N; » is the same for
alliin0<i<pr-—2.

Second-order B-splines as defined above are often called uniform linear
B-splines to emphasize the use of a uniform knot vector.

Note that the down part N(}’l of Ny, and the up part N7971,1 of N,_1,1 have no
partners, so have been discarded, which is why we have r — 1 linear B-splines N; 1,
for i = 0 to r — 2, versus the r first-order B-splines we started with. It’s clear from
Figure 18.12 that the parameter space must be truncated from [0,7] to [1,r — 1] as
well, for, otherwise, there’s a problem with the partition-of-unity property in the two
end knot intervals [0,1] and [r — 1,7]. Once this is done, though, we're in good shape,
or at least in significantly better shape than the first-order B-splines. All items in the
Wish List at the end of Section 18.1 are now fulfilled except for C'-continuity, but
now the functions are at least C?, if not quite C* (because of corners at the joints).

Linear B-Spline Curves

What sort of curve is the linear B-spline approximation ¢ of » — 1 control points

Py, P1, ..., P._o, which uses the linear B-splines as blending functions? It’s defined by
r—2

clu) =Y Nig(wP; (1<u<r-1) (18.14)
1=0

and we’ll ask the reader next to see what this gives.

Exercise 18.6. Verify that the linear B-spline approximation ¢ given by Equa-
tion (18.14) is the polygonal line through the control points in the sequence they are
given. See Figure 18.14, where » = 7. This is certainly more respectable a curve than
the first-order approximation.

Terminology: A B-spline approximation of a sequence of control points is often called
a B-spline curve, a spline curve or, simply, a spline. There is ambiguity sometimes,
therefore, with the terminology for B-spline blending functions, but it’ll be clear from
the context if the term refers to a blending function or an approximating curve.

Section 18.2
B-SPLINE CURVES

Figure 18.13:
Screenshot of
bSplines.cpp at
second-order.

Figure 18.14: Linear
B-spline approximation —
the curve is a polyline.
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Chapter 18 Linear B-Spline Properties

Here’s a list of properties of linear B-splines similar to the one made earlier for
first-order B-splines:

1. Each N; is piecewise polynomial, consisting of at most four pieces, each of
which is linear, except for zero end pieces.

2. N; 2 has support in [¢,7 + 2], the union of two consecutive knot intervals.

3. Each N; 5 is C° but not C!, at its joints. Apart from its joints it’s smooth
everywhere.

4. Together, the N; 5 form a partition of unity over the parameter space [1,r — 1].
5. The N; o are translates of one another.

6. A linear B-spline approximation is C°, but, generally, not C*.

18.2.3 Quadratic B-Splines

Linear B-splines are certainly preferable to first-order ones, but we're still shy of
C'-continuity. If we could raise the degree of the polynomial pieces yet again, from 1
to 2, we might do better.

172

(b)

Figure 18.15: (a) The graphs of the two straight-line multiplying functions for Ny 2, one dashed
and one dotted (b) The result of the multiplication: the up part N((J),z (dashed) and the down part

N(i2 (dotted).

It turns out that the approach introduced in the last section of breaking first-order
B-splines into up and down parts of one higher degree, and then pairing them up to
make linear B-splines, generalizes. Consider first Ny 2, whose non-zero part is graphed
in Figure 18.15(a). Recalling Remark 18.3, to break Ny o into two we’ll multiply it
by a straight-line function increasing from 0 at the left end of its support to 1 at the
right, as well as by the complementary function decreasing from 1 to 0. Since the
supporting interval of Ny is [0, 2], the two straight-line functions called for are u/2
and —u/2 + 1, respectively, which are shown in Figure 18.15(a) as well.

Accordingly, break N o as follows:

Noa =5 Noa+ (=5 +1) Noz (18.15)

where the “up part” — it’s not really increasing throughout any more but we’ll stick
with the term — is

0, u<0

‘ U 2 0<u<1

N§>(u) = 5 Noa = —%ﬁiu Sy (18.16)
0, 2<u



and the down part is

0, «u<0
U : —Lu24u, 0<u<1
N01,2(U):(—§+1)N072: 1,2 _22u+2 1<y<2 (18.17)
2 ’ > >~
0, 2<u

The graphs of the two parts, resembling opposing shark fins, are shown in

Figure 18.15(b).

Exercise 18.7. Verify the formulae for NG5 and N,
by u/2 and —u/2 + 1, respectively.

by multiplying that for Ny o

The other linear B-splines N; o, for 1 < ¢ < r — 2, can similarly be broken.
Figure 18.16 shows the graphs of the up and down parts.
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r—2 r—1 r

Figure 18.16: Linear B-splines each broken into an up (dashed) part NO2 and down (dotted) part
V12 Successive ones are distinguished by color.

Next, as in the first-order case, pair them up, adding each up part to the down
part of the following linear B-spline. Non-zero pieces of paired up and down parts
overlapped only at a point in the first-order case, so adding meant simply splicing
graphs end to end. Now, we do actually have to add on interval overlaps.

And again magic! Two adjacent and opposing shark fins, one dashed and the other
dotted, both with a sharp corner in the middle, add up to a smooth-looking floppy
hat! See Figure 18.17. Precisely, the up part of one linear B-spline adds to the down
part of the following one to make a quadratic B-spline (or, third order B-spline).

Figure 18.17 explains exactly what’s happening. The graph of N82 is green dashed,
while that of N{, black dotted. The graph Ny 3 of their sum consists of the outer
green dashed arc on [0, 1], the outer black dotted arc on [2,3] and the unbroken red
arc on [1,2] in the middle, the latter being the sum of the inner green dashed and
the inner black dotted. So it’s in the middle interval [1, 2] that actual summing takes
place. We’ll see the summed equation itself momentarily.

Experiment 18.3. Run again bSplines.cpp and select the quadratic B-splines
over the knot vector

[0,1,2,3,4,5,6,7,8]
Figure 18.18 is a screenshot. Note the joints indicated as black points.

Enda

No,3 is the first quadratic B-spline. Figure 18.19 depicts the sequence of quadratic
B-splines N; 3, 0 < ¢ <7 — 3, on the domain [0, 7]. Now, for their equations. As they
are evidently translates of one another, it’s sufficient to write only that of the first
one:

0, ©u<0
w2, 0<u<1
Nos(u) = N9o(w) + Nig(u) =4 3 — (-3, 1<u<2 (18.18)
1(-u+3)% 2<u<3
0, 3<u

Section 18.2
B-SPLINE CURVES

Figure 18.17: Adding
N8’2 and Nll’2 to make
No,3. No,3 consists of
three parts: on [0,1] it’s
just NO 9, on [2,3] it’s
N1 o, while in the middle,
on [1,2] it is the sum of
N0,2 and N1,2 Joints are
indicated.

Figure 18.18:
Screenshot of
bSplines.cpp at third
order.
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Figure 18.20: Quadratic
B-spline approximation.
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Figure 18.19: Non-zero parts of the quadratic B-splines. Successive splines are distinguished by
color. The pieces adding up to 1 on [2, 3] are indicated.

Eixercise 18.8. Verify the preceding formula with the help of (18.16) and (18.17).
Don’t forget to shift the second equation to the right for the formula for N1172.

Eixercise 18.9. Use Equation (18.18) to determine the equation of Ni3(u) and,
generally, N; 3(u).

Exercise 18.10. Verify that the first quadratic B-spline Ng 3 is C! everywhere by

differentiating the functions on the RHS of (18.18) and comparing the tangents on

either side at each joint (which is only where discontinuity might occur). The four

joints of N 3, with z-values 0, 1, 2 and 3, are indicated in Figure 18.17.
Differentiating again, verify that Ny 3 is not C? at its joints.

As the quadratic B-splines are translates one of one another, it follows from the
preceding exercise that they are all C! everywhere, though not C? at their joints.

Compare the 5-line formulas (18.2) and (18.18) to see that we’ve come
now full circle back to almost the same piecewise quadratic blending function which
we used to motivate B-splines in the first place!

As in the linear case, the parameter space must be truncated, this time to [2, 7 — 2],
to ensure that the partition-of-unity property holds. The key to keep in mind is that
partition-of-unity holds in those knot intervals on which there is defined a left, a
middle and a right quadratic arc — from successive quadratic B-splines (Figure 18.19
shows these three pieces over the interval [2, 3]).

Pop the champagne: we now officially have every item on the Wish List!

Quadratic B-Spline Curves

So what sort of curve is the quadratic B-spline approximation ¢ of r — 2 control points
Py, P1, ..., P._3, defined by

clu)=» Nis(w)P;, (2<u<r-2) (18.19)

where the quadratic B-splines are used as blending functions?

First, and importantly, since the quadratic B-splines are all C!, so is a quadratic
B-spline approximation. We’ve gained at least respectable continuity then. However,
as we ask the reader to show next, the property of interpolating the first and last
control points has been lost (though not on our Wish List, this, nevertheless, is
desirable).

Exercise 18.11. Prove that the quadratic spline curve ¢ defined by Equation (18.19)
begins at the midpoint of PyP;, ends at the midpoint of P,._4P,_3, and doesn’t
necessarily interpolate any of its control points. See Figure 18.20.



Darn, just when we thought things were going our way, a potentially nasty bug
rears its ugly head. Not to worry, as soon as we are able to loosen up the knot vector
from being uniform, we’ll be happily interpolating first and last control points.

ExpeI‘iment 18.4. Run quadraticSplineCurve.cpp, which shows the quadratic
spline approximation of nine control points in 2D space over a uniformly spaced vector
of 12 knots. Figure 18.21 is a screenshot.

The control points are green. Press the space bar to select a control point — the
selected one turns red — and the arrow keys to move it. The knots are the green points
on the black bars at the bottom. At this stage there is no need to change their values.
The blue points are the joints of the curve, i.e., images of the knots. Also drawn in
light gray is the control polygon.

Ignore the code itself for now. We'll be seeing how to draw spline curves and
surfaces using OpenGL soon. End

Exercise 18.12. What part of the quadratic spline curve ¢ approximating the
control points Py, Py, ..., P._3 is altered by moving only P;? Your answer should
be in terms of an arc of ¢ between a particular pair of its joints. Verify using
quadraticSplineCurve.cpp.

Quadratic B-Spline Properties
A list of properties for quadratic B-splines:

1. Each N; 3 is piecewise polynomial, consisting of at most five pieces, each of
which is quadratic, except for zero end pieces.

2. N, 3 has support in [¢,7 + 3], the union of three consecutive knot intervals.

3. Each N; 3 is C!, but not C2, at its joints. Apart from its joints it’s smooth
everywhere.

4. Together, the N; 5 form a partition of unity over the parameter space [2,r — 2].
5. The N; 3 are translates of one another.
6. A quadratic B-spline approximation is C'', but, generally, not C2.

When placing it on our Wish List, we expected to be rewarded for the partition-
of-unity property by felicitous behavior of the B-spline approximating curves. The
reader is asked to show next that indeed we are.

Exercise 18.13.

(a) Prove that the quadratic spline curve approximating a sequence of control points
lies in the convex hull of the latter.

(b) Affine invariance: prove that an affine transformation of a quadratic spline curve
is the same as the quadratic spline curve approximating the transformed control
points.

18.2.4 Cubic B-Splines

We're going to ask you to do most of the lifting in this section.

To start with, break the first quadratic B-spline Ny 3 into two parts: an “up” part
obtained from multiplying it by a straight-line function increasing from 0 at the left
end of its support to 1 at the right end and a “down” part from multiplying it by the
complementary function decreasing from 1 to 0 over its support. Here’s the equation
showing the split: "

5 Nos + (~5 +1) Nog (18.20)

Noz = 3

Section 18.2
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Figure 18.21:
Screenshot of quadratic-
SplineCurve.cpp.
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0 1 2 3 4

Figure 18.22: The first
cubic B-spline function
No,4. Joints are indicated.

Figure 18.23:
Screenshot of
cubicSplineCurvel.cpp.
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Exercise 18.14. Write equations for the up part

and the down part
u
Ny 5(u) = (—g +1) Noj3

in a manner analogous to Equations (18.16) and (18.17) for the quadratic B-splines.
Both up and down parts are piecewise cubic.

Eixercise 18.15. Verify by adding N9 4(u) and N{ 5(u) that the equation of the first
cubic B-spline is:

0, u<0
p(2—u), 0<u<l1
qg2—-wu), 1<u<?2
No,a(u) = gu—2) 2<u<3 (18.21)
plu—2), 3<u<4
0, 4<u

and 1
q(u) = E(SUS — 6u? +4)

See Figure 18.22.
Exercise 18.16. Verify that cubic B-splines are C2, but not C?3, at their joints.

Exercise 18.17. Sketch the sequence of cubic B-splines N; 4, for 0 < ¢ < r — 4,
over [0, r] similarly to Figure 18.19 for quadratic B-splines. What should be the new
parameter range?

Experiment 18.5. Run bSplines.cpp and change the order to see a sequence of
cubic B-splines. End

Cubic B-Spline Curves

The cubic spline curve ¢ approximating r —3 control points Py, Py, ..., P._4 is obtained

as

B<u<r—3) (18.22)

ExpeI‘iment 18.6. Run cubicSplineCurvel.cpp, which shows the cubic spline
approximation of nine control points in 2D space over a uniformly-spaced vector of 13
knots. The program’s functionality is similar to that of quadraticSplineCurve.cpp.
See Figure 18.23 for a screenshot.

The control points are green. Press the space bar to select a control point — the
selected one is colored red — then the arrow keys to move it. The knots are the green
points on the black bars at the bottom. The blue points are the joints of the curve.
The control polygon is a light gray. End

Eixercise 18.18. Prove that a cubic spline curve doesn’t necessarily interpolate any
of its control points. See again Exercise 18.11 and say now where a cubic spline curve
starts w.r.t. its control points and where it ends.



Cubic B-Spline Properties
A list of properties for cubic B-splines:

1. Each N; 4 is piecewise polynomial, consisting of at most six pieces, each of which
is cubic, except for zero end pieces.

2. N, 4 has support in [i,4 + 4], the union of four consecutive knot intervals.

3. Each N; 4 is C?, but not C3, at its joints. Apart from its joints it’s smooth
everywhere.

4. Together, the N; 4 form a partition of unity over the parameter space (3,7 — 3].
5. The N; 4 are translates of one another.
6. A cubic B-spline approximation is C2, but, generally, not C3.

Cubic B-splines are the most commonly used in design applications,
because they offer the best trade-off between continuity and computational efficiency.

18.2.5 General B-Splines and Non-uniform Knot Vectors

It’s probably evident now how to manufacture B-splines of arbitrary order over the
uniform knot vector {0,1,...,7}. One would apply the break-and-make procedure to
B-splines of each order to derive ones of one higher order. We formalize the derivation
of B-splines of arbitrary order over {0,1,...,7} recursively as follows:

The first-order B-splines N; 1, 0 < i < r — 1, are as defined in
Section 18.2.1:

1, 0<u<1
No.a(u) = { 0, otherwise (18.23)
and for 1 <i<r-—1
)L i<u<i+1
Nia(u) = { 0, otherwise (18.24)

Suppose, recursively, that the B-splines Nj,,—1, for 0 < i < r —m + 1, have been
defined for some order m — 1 > 1. Then define the ith B-spline N; ,,, of order m, for
0 <4 < r —m, by the equation:

uU—1 i+m—u
N,,-,m(u) = (m — 1) Ni,7,L,1(u) + (ﬁ) Ni+17m,1(u) (1825)

It’s not hard to see that the inductive formula (18.25) comes from a straightforward
application of break-and-make. The summand

(=) Yot

is the up part of N;,,—1(u) obtained from multiplying it by the straight-line function
(u—1)/(m — 1) increasing from 0 at ¢, the left end of its support, to 1 at ¢ + m — 1,
the right end.

Likewise, the summand

P+m—u
(7) Ni+1,m—1(u)

m—1

is the down part of N;i1 ,,—1(u) obtained from multiplying it by the straight-line
function (¢ + m — w)/(m — 1) decreasing from 1 to 0 from the left end i + 1 to the
right ¢ + m of its support.

Terminology: The reader will have noted the convention that the degree of a B-spline
is that of its polynomial pieces, while its order is its degree plus one.

Section 18.2
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Exercise 18.19. A tacit assumption in the discussion above was that the support
of N; ;m—1 is in the interval [i,4 + m — 1]. Prove this is true by induction.

Exercise 18.20. Make a six-point list of properties for uniform B-splines of the mth
order like the ones earlier for uniform lower-order splines.

Before proceeding further, though, we are going to loosen restrictions on the knot
vector, which till now had been the uniform sequence

Keep in mind that the operative word is uniform, in particular, that knots are equally
spaced; it does not matter that they are integers. For instance, if a knot vector were
of the form

{a,a+d,a+26,...,a+1rd}

for some a, and some 0 > 0, e.g.,
{1.3,2.8,4.3,...,1.3 + L.5r}

all calculations made so far would clearly go through again, though with different (and
awkward) number values, and all properties of B-splines deduced previously would
hold, too.

The restriction of uniformity is removed by allowing the knot vector to be any
sequence of knots of the form

T = {tﬂvth-’-ytr}
where the t; are non-decreasing, i.e.,
to <t <...<t, (18.26)

Such knot vectors are called non-uniform. Yes, successive knots can even be equal
and such so-called multiple knots have important applications, as we’ll see.

The term non-uniform knot vector is a little unfortunate in that it
actually means not necessarily uniform, because a uniform knot vector evidently
satisfies (18.26) as well.

Hmm, do we start afresh working our way up from first-order splines, this time
around over non-uniform knot vectors? Not at all. Pretty much all our earlier
discussions go through again, including break-and-make. Without further ado then,
here’s the recursive definition of B-splines over non-uniform knot vectors.

Let
T = {to,t1,...,tr} (18.27)
be a non-uniform knot vector, where r > 1.
The (non-uniform) first-order B-spline functions N; 1, for 0 < i <r—1, are defined
as follows:
_ 1) tO S u S tl
No.a(u) = { 0, otherwise (18.28)

andfor 1 <¢<r-—1

1 ti<u§ti+1

Niy(u) = { O otherwise (18.29)

The (non-uniform) mth order B-spline functions N; ,,, where the order m lies within
1 <m <r, and the index 7 in 0 <14 < r — m, are recursively defined by:

u—t; Ligm —u
Nz-,m(u) = <7_> Niﬁm,l(u) + (7 +m_ - ) Ni+1,m71(u)
tz+m—1 tl t7,+m tz+1
(18.30)



Note: The convention to follow in case the denominator of either of the two fractional Section 18.2
terms is 0 — which may occur if there are equal knots — is the following: if the term is B-Sprine CURVES
of the form %, then declare its value to be 1; if it is of the form §, where a is not 0,
then declare its value to be 0.

This recursive formula (18.30), discovered by Cox, de Boor and Mansfield
independently in 1972, known accordingly as the Cox-de Boor-Mansfield (CdM)
formula or recurrence, was an important milestone in B-spline theory. However, it’s
really straightforward for us to understand now, given our development of the topic
so far.

1 (. Do 2 D

. —u -

N (10)

i i+l itm—1 i+m

Figure 18.24: Graphs of the functions on the RHS of Equation (18.30): N; m—1 and Niy1,m—1
u—t; titm—u
titm—1—t; and titm—tit+1

and their respective linear multipliers

Equations (18.28) and (18.29), respectively, replicate, with obvious changes,
(18.23) and (18.24) for first-order B-splines over a uniform knot vector. Equation (18.30)
imitates (18.25). It formalizes break-and-make — the summands are the up and down
parts, respectively, of two successive spline functions of one lower order. Figure 18.24
shows graphs of all four functions on the RHS of Equation (18.30).

N, N, N, N. N

0.1 1.1 ] 2.1 3.1 r—1.1

7, 7, 0 4 1 7, 1

Figure 18.25: Non-zero parts of the first-order B-splines over a non-uniform knot vector.

Figure 18.25 shows the graphs of the first-order B-splines over a non-uniform knot
vector, while Figure 18.26 those of linear B-splines over the same knot vector.

The equations of the spline functions themselves are a little more complicated
than in the case of integer knots for the simple reason that they now involve variables
for knot values. For example, here’s the equation, analogous to (18.18), for the first
quadratic B-spline over a non-uniform knot vector:

0, u<ty
e to<u<ity
Nog(u) = § #24 fazp 4 Bt Aol g <<ty (18.31)
PO T, <u<t .
0, t3<u 573
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Figure 18.26: Non-zero parts of the linear B-splines over a non-uniform knot vector.

Not pretty, but B-spline computations are almost invariably done recursively in code,
so a formula like this rarely needs to be written explicitly.

Eixperiment 18.7. Run again bSplines.cpp. Change the knot values by selecting
one with the space bar and then pressing the left/right arrow keys. Press delete to
reset knot values. Note that the routine Bspline() implements the CdM formula
(and its convention for 0 denominators).

In particular, observe the quadratic and cubic spline functions. Note how they
lose their symmetry about a vertical axis through the center, and that no longer are
they translates of one another.

Play around with making knot values equal — we’ll soon be discussing the utility
of multiple knots. Figures 18.27(a) and (b) are screenshots of the quadratic and cubic
functions, respectively, both over the same non-uniform knot vector with a triple knot
at the right end. End

' bsplnescop o x 1 bspinescpn o %

Quadratsc B-splines Cubic B-splines

R
ANAN

(a) (b)

Figure 18.27: Screenshots of bSplines.cpp over a non-uniform knot vector with a triple knot at
the right end: (a) Quadratic (b) Cubic.

Example 18.1. Find the values of (a) N3 3(5) and (b) Ny 3(5), if the knot vector is
{0,1,2,3,4,5,5,5,6,7,...}, the non-negative integers, except that 5 has multiplicity
three.

Answer: The successive knot values are
to=0, t1=1, ta=2, t3=3, t4=4, t5=>5, tg=5, t7=5, tg=6, to=7, ...
(a) Instantiating the CdM formula (18.30):

fe—u
te — t4

u—tg

N4,2(u)

ts — 13



Plugging in w = 5 and the given knot values: Section 18.2
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N313(5) = 5_3 32(5) + 571 N472(5) = N312(5) (18.32)

Using CdM again,

~ u—t t u
N3a(u) = 2 31(w) + > Ny (u)
ty —t3 t5 — 1y
so that
5—-3 5—9
N32(5) = —— N3 1(b —— Nya1(b
3,2(5) 1-3 3,1()+5_4 1,1(5)
= 2x0 + 0x1 (from Equations (18.28) and (18.29))
= 0
Taking the above back to (18.32) we have
N3 3(5)=0
(b) . .
- u— u
]\/43,(21,) = n : 4,2(U) + t7 Ng,,g(u)
6~ la 75
giving
5—-4 5—5
Ny3(5) = —— Nao(5 —— N52(5
1,3(5) 51 4,2()-1-5_5 5,2(5)

0
= Nio(5) + 6N5,2(5)

= Ny2(5) + N52(5) (using convention § = 1) (18.33)
Using CdM again,

u—t4

Nyo(u) = N, N5
a,2(u) P— a1(u) + P— 1 (u)
so that
5—4 5—5
Nys(5) = —— Na1(5 —— N51(5
4,2(5) 54 4,1()+5_5 5,1(5)
= 1x1 + 1%0 (note by (18.29) that N5, is zero everywhere)
1 (18.34)
CdM again gives
~ u—t t u
N5a(u) = > Noa(u) + Ne,1(u)
te — ts tr —tg
implying
5—-5 5—5
N52(5) = —— N5:1(5 —— N1 (5
5,2(5) 55 5,1()+5_5 6,1(5)
= 1x0 + 1%0
0 (18.35)

Using (18.34) and (18.35) in (18.33) we have
Nys(5) =1

Exercise 18.21. Find the values of N5.3(5) and Ng 3(5) for the same knot vector as
in the preceding example.

Eixercise 18.22. Compute Ny3(7) again over the knot vector of the preceding
example. You will have to invoke the convention that § = 0, if @ is not 0. 575
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Figure 18.28:
Screenshot of quadratic-
SplineCurve.cpp with a
double knot at 5 and a
triple knot at 11.
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General B-Spline Curves

The mth order B-spline approximation ¢ of » — m + 1 control points Py, P1,..., Pr—pm
is the curve obtained by applying the mth order B-splines as blending functions. Its

equation is:
T,

clu) = E

m
i=0

Nl‘ m(u)P,' (tm,1 S u S trfm+1) (1836)

)

Experiment 18.8. Run again quadraticSplineCurve.cpp. Press ‘k’ to enter knots
mode and alter knot values using the left/right arrow keys and ‘c’ to return to control
points mode. Press delete in either mode to reset.

Try to understand what happens if knots are repeated. Do you notice a loss of
C-continuity when knots in the interior of the knot vector coincide? What if knots at
the ends coincide? Figure 18.28 is a screenshot of quadraticSplineCurve.cpp with
a double knot at 5 and a triple at the end at 11. End

Exercise 18.23. Can you find an arrangement of the knots for the quadratic spline
curve to interpolate its first and last control points?

Exercise 18.24. Why does changing the value of only the first, or only the last
knot, not affect the quadratic spline curve?

Exercise 18.25. (Programming) Run again cubicSplineCurvel.cpp. Press ‘k’
to enter knots mode and alter knot values using the left/right arrow keys and ‘c’ to
return to control points mode. Press delete in either mode to reset.

Can you find an arrangement of the knots so that the cubic spline curve interpolates
its first and last control points?

Exercise 18.26. What part of the mth order spline curve ¢ approximating the
control points Py, P, ..., P._,, is altered by moving only P;? Your answer should be
in terms of an arc of ¢ between a particular pair of its joints.

We collect information about mth order B-spline functions and their corresponding
approximating spline curves in the following proposition.

Proposition 18.1. Let
T= {t07t17' .. atr}

be a non-uniform knot vector, where r > 1.
The mth order B-spline functions N; m, for some order m lying within 1 <m <r,
and, where 0 < i < r —m, satisfy the following properties:

(a) Each N; ., is piecewise polynomial, consisting of at most m + 2 pieces, each of
which is a degree m — 1 polynomial, except possibly for zero end pieces.

(b) Nim has support in [t;, tiym], the union of m consecutive knot intervals.

(c) If the knots in T are distinct, each N; ., is C™ 2, but not C™1, at its joints.
In this case, apart from its joints, each N;m is smooth everywhere.

(d) The N; ., together form a partition of unity over the parameter space [ty —1, tr—m41]-

(e) Every point of the mth order B-spline approzimation ¢ of 1 —m + 1 control
points Po, Py, ..., Pr_m, defined by Equation (18.36), over the parameter space
[tm—1,tr—m+1], 18 a convex combination of the control points and lies inside
their convexr hull.

(f) (Affine Invariance) If g : R® — R? is an affine transformation, and c is the mth
order B-spline approximation of 1 —m + 1 control points Py, P1,..., Pr_pm in
R3, then the image curve g(c) is the mth order B-spline approximation of the
images g(Fo), g(P1), ..., g(Pr_m) of the control points.



(9) If the knots in T are distinct, the mth order B-spline approximation ¢ of r —
m+ 1 control points Py, P1, ..., Pr_m defined by Equation (18.36) is C™~2, but,
generally, not C™~1,

Proof. The proofs are a straightforward technical slog and we’ll not write them out.
O

The following relation for a B-spline curve is useful to remember:
number of knots = number of control points + order (18.37)

Exercise 18.27. Deduce (18.37).
Hint: Count the number of knots and control points in (18.36).

Non-uniform Knot Vectors

So, of what use are non-uniform knot vectors?

One is to be able to control the influence that a control point has over an
approximating curve. For example, consider the cubic spline curve ¢ approximating
control points Py, P, ... over the knot vector {¢p,%1,...}, as in Figure 18.29(a), which
shows a few intermediate control points. Moving control point, say, Ps alters only the
arc of ¢ between a = ¢(t5) and b = ¢(lg), as N5 4 has support in [t5, {g]. Consequently,
the closer or farther apart are the knots from ¢5 to tg, the more concentrated or diffuse
the influence of Ps. This generalizes, of course, to all P;, allowing the designer to vary
the domain of influence of control points by rearranging knots.

o
P
new control points P’

9

(b)

Figure 18.29: (a) Part of a cubic spline curve (b) With a new knot inserted.

Another practical consequence of non-uniform knot vectors is the technique of
knot insertion, implemented in many commercial modelers, to allow the designer
increasingly fine control over part of a spline curve. Clearly, the more knot images
(joints, that is) there are in an arc of a curve, the more control points have influence
over it and, therefore, the more finely it can be edited. Refer again to Figure 18.29(a).
Currently, the shape of the arc between a and b is determined by the four control
points Ps, Ps, P; and Ps. If one could insert a new knot, say, between tg and tr
without changing the shape of the curve, there would then be five control points,
instead of four, acting upon the same arc, affording the designer an added level of
control.

Knots can, in fact, be inserted without changing either the shape of a spline curve
or its degree, though, with a newly computed set of control points. See Figure 18.29(b),
where a new knot has been inserted between ¢ and t7, giving rise to a corresponding
new joint. The joints have been re-labeled in sequence and a (hypothetical) new
set of control points shown; now, in fact, the arc of the spline curve between a and
b is shaped by the five control points Pf, P, ..., P, not four as before. We’'ll not
go into the theory of knot insertion ourselves, referring the reader instead to more
mathematical texts such as Buss [21], Farin [45] and Piegl & Tiller [113].

Section 18.2
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Multiple Knots

Coincident knots — multiple knots and repeated knots are the terms most commonly
used — have a particularly useful application.
We’ll motivate our discussion with a running example using the knot vector

T= {tOZO, tlzl, to=2, t3=3, t4:3, t5:4, t6:5, t7=6, }

which has a double knot at t3 = t4 = 3. Generally, the multiplicity of a knot is the
number of times it repeats.
The graphs of some of the B-spline functions over T are shown in Figure 18.30.

1 — 1 1 —

NZ.I N3.l N4.l
01 2 34 5 6 0 1 2 4 5 6 0 1 2 4 5 6
1 1 1

N1.2 N2,2 N3,2
01 2 3 4 5 6 T 2 4 5 6 T 2 4 5 6
1 1 1

N42 N0,3 N13
01 2 345 6 012 3 4 5 6 T 2 4 5 6
1 1 1

st Ns,s N43
01 2 3 4 5 6 T 2 3 4 5 6 T 2 4 5 6

Figure 18.30: B-spline functions over the knot vector T'= {0,1,2,3,3,4,5,...} with a double knot
at 3 (distinguished inside a box).

Exercise 18.28. Verify that the graphs of the first-order B-splines over T
are correctly depicted in the top row of Figure 18.30 by applying the defining
Equations (18.28) and (18.29). In particular, the first-order B-splines are all 1 on
their supporting intervals, excluding possibly endpoints, and 0 elsewhere, except for
N3 1, which is 0 throughout.

Exercise 18.29. Derive the equations of the linear B-splines from the first-order
ones — by plugging m = 2 into the recursive Equation (18.30) — to verify their graphs
in the second row of Figure 18.30, as well as at the leftmost in the third. In particular,
the linear B-splines over T' are all C? and translates of one another, except for Na o
and N3 o, neither of which is CO.

Unfortunately, the artifact of vertical edges in the display when knots coincide
makes it tricky to use bSplines.cpp to visually verify the linear B-spline graphs in



Figure 18.30. However, there is no such issue with quadratic B-splines, so we ask the
reader to do the following.

Exercise 18.30. (Programming) Arrange the knots of bSplines.cpp to make
their nine successive values 0, 1, 2, 3, 3, 4, 5, 6 and 7, which are the first few knots of
T. Then verify visually the graphs of the five quadratic B-splines in Figure 18.30. In
fact, all the quadratic B-splines over 1" are C' and translates of one another, except
for Ny 3, No3 and N33, which are C° but not C*.

Next, we investigate the behavior of the approximating B-spline curve in the
presence of repeated knot values.

Exercise 18.31. Use Equation (18.36) and the graphs already drawn of the first-
order and linear spline functions over T to verify that the first-order and linear spline
curves approximating nine control points — arranged, alternately, in two horizontal
rows — are correctly drawn in Figures 18.31(a) and (b), respectively.

In particular, the first-order approximation loses the control point P3 (drawn hollow)
altogether, while the linear approximation loses the segment P, P3 and, therefore, is
no longer C°.

ExpeI‘iment 18.9. Use the programs quadraticSplineCurve.cpp and cubic-
SplineCurvel.cpp to make the quadratic and cubic B-spline approximations over
the knot vector T' = {0,1,2,3,3,4,5,6,7,...} of nine control points placed as in
Figure 18.31(a) (or (b)). See Figure 18.32(a) and (b) for screenshots of the quadratic
and cubic curves, respectively.

81 quadraticsplineCurve.cop o ox 1 cubicsplineCurvet.cop o ox

Knots mode

VAVAV

0 1 2 3 4 5 6 7 8 5 1011

(a) (b)

Figure 18.32: Screenshots of (a) quadraticSplineCurve.cpp and (b) cubicSplineCurvel.cpp
over the knot vector "= {0,1,2,3,3,4,5,6,7,...} and approximating nine control points arranged
in two horizontal rows.

The quadratic approximation loses C'-continuity precisely at the control point Ps,
which it now interpolates as the curve point ¢(3). It’s still C° everywhere.

It’s not easy to discern visually, but the cubic spline drops from C? to C'-continuous
at ¢(3). Ena

Let’s see next what happens with even higher multiplicity.

Experiment 18.10. Continuing with cubicSplineCurvel.cpp with control points
as in the preceding experiment, press delete to reset and then make equal ¢4, t5 and
tg, creating a triple knot at 4. Figure 18.33 is a screenshot of this configuration.
Evidently, the control point P5 is now interpolated at the cost of a drop in continuity
there to mere C°. Elsewhere, the curve is still C2. End

It seems, generally, that repeating a knot increases the influence of a particular
control point, to the extent that if the repetition is sufficient then that control point
itself is interpolated, though at the cost of continuity at the control point itself. This

Section 18.2
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P P, P, P

° o ) °

0 2 4 6 8
(a)

PPy PP

by P, P P Py
(b)

Figure 18.31:

(a) First-order and

(b) linear spline curves
over the knot vector T' =
{0,1,2,3,3,4,5,6,7,...},
approximating nine
control points arranged
alternately in two
horizontal rows. The
(hollow) control point Ps3
is the only one missing
from the first-order
“curve”, which consists of
the remaining eight points.
The second-order curve is
the polyline Po P ... Py
minus PaPs3.

Figure 18.33:
Screenshot of
cubicSplineCurvel.cpp
with a triple knot at 4.
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does not appear to be a particularly appealing trade-off unless a low-continuity artifact,
e.g., a corner, is itself a design goal.

Let’s examine more closely how the loss arises — evidently, because of the difference
in the value of the derivative (of some order) of ¢ on either side of a control point P.
For example, the tangents to the arcs on either side of the interpolated control point
P; of the quadratic spline curve in Figure 18.32(a) are different.

Consider now if P were an endpoint of c. Then continuity cannot be lost by
derivatives differing on the two sides of P, for the simple reason that the curve is
only to one side! And, yet, there is no reason why the influence of P cannot still
be increased by repeating knots. We are on our way to recovering the property of
interpolating end control points that was lost at first by quadratic spline curves.

1 quadaticSpineCurve.cop o x 1 cubicsplineCurvel.cpp o x

Knots mode Knots mode

_—

0 L 2 3 4 5 & 7 8 9 1011 12

(®)

Figure 18.34: Screenshots of (a) quadraticSplineCurve.cpp and (b) cubicSplineCurvel.cpp,
both with knots repeated at the end to interpolate the first and last control points.

Experiment 18.11. Make the first three and last three knots separately equal
in quadraticSplineCurve.cpp (Figure 18.34(a)). Make the first four and last four
knots separately equal in cubicSplineCurvel.cpp (Figure 18.34(b)). Are the first
and last control points interpolated in both. Yes. Do you notice any impairment in
continuity? No. End

Generally, if the first m and last m knots of an mth order spline curve are coincident,
and there are no other multiple knots, then the curve interpolates its first and last
control points without losing C™~2-continuity anywhere. In fact, a knot vector which
starts and ends with a multiplicity of m and whose intermediate knots are uniformly
spaced is called a standard knot vector. From formula (18.37), the size of a standard
knot vector is the sum of the number of control points and the order of the spline
curve. E.g., a standard knot vector for a quadratic spline with nine control points is

{0,0,0,1,2,3,4,5,6,7,7,7}

Eixercise 18.32. Jot down a standard knot vector for a quadratic spline over 10
control points and for a cubic spline over 9 control points.

Exercise 18.33. Use the CdM formula to show that Noy,3(l2) =1 over the standard
knot vector
T7={0,0,0,1,2,...,7r—6,r—5,r—>51r—5}

of size r for a quadratic spline. Use this to prove that the quadratic spline

C(’M) = Nz 3(U)Pi (tz =0 <u<r-— 5= t,n_g)

approximating the r —m+1 control points P;, 0 < ¢ < r—m, over 1" indeed interpolates
the first one, in particular, c(t2) = Pp.



For the record here’s a proposition: Section 18.2

Proposition 18.2. A spline curve over a standard knot vector interpolates its first ~1-SPLINE CURVES
and last control points.

Proof. The proof is a generalization of the preceding exercise to establish that the
first control point is always interpolated. We’ll leave the reader to do this by an
induction. That the last control point is interpolated as well follows by symmetry. O

The use of a standard knot vector for splines bequeaths yet another Bézier-like
property — recall Proposition 17.1(f) — in addition to the interpolation of the end
control points:

Proposition 18.3. The tangent lines at the endpoints of a spline curve over a
standard knot vector each pass through the adjacent control point.

Proof. We’ll prove this for quadratic splines in the next example. The general proof
is not difficult but tedious, and we’ll leave it to the motivated reader to do on her own.
O

Example 18.2. Prove that the tangent lines at the endpoints of a quadratic spline
curve over a standard knot vector each pass through the adjacent control point.

Answer: We'll show that the tangent vector at the first control point passes through
the second. The result at the other end follows by symmetry.
For quadratic splines, the standard knot vector is

T7=4{0,0,0,1,2,...}
The quadratic spline curve approximating the control points Py, Py, P, ... is
c(u) = N073 (’U,)PO -+ N173(U)P1 -+ N273(’U1)P2 -+ Ng,g(u)Pg +...

Now, the blending functions N; 3, for ¢ > 3, all vanish in [to,t3] = [0,1].
Consequently, in [0, 1]:

c(u) = No,g(u)Po -+ Nl,g(u)Pl + N2,3(U)P2
Plugging the standard knot vector values into formula (18.31) for Ny 3 we get
Nos(u) =1—2u+u?, wuel0,1]

One can use (18.31) to determine Np 3(u) as well by incrementing the subscripts
on its RHS by 1. This gives

3
Ny 3(u) = 2u — §u2, u € [0,1]
Likewise, it’s found that
1
Ny s(u) = iuz, u € [0,1]

Therefore,

1

c(u) = (1 — 2u+2) Py + (2u — guz) Pt (50) P we0,1]

Differentiating,
du)=(-2+2u) P+ (2-3u) P +uP, wuel0,1]
Plugging in © = 0, one sees that
d(0) =2(P, — Py)
which is indeed in the direction from P, to P;.

We see it’s for good reason, therefore, that standard knot vectors are most often
used in B-spline design. 581
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Eixercise 18.34. Proposition 18.1(e) says that a spline curve is contained in the
convex hull of (all) its control points. Prove the stronger statement that a spline curve
of order m can be divided into successive stretches that each lie in the convex hull of
only some m of its control points.

Bézier Curves and Spline Curves

It turns out that Bézier curves are special cases of spline curves:

Proposition 18.4. The (n+ 1)th order Bézier curve approzimating the n+ 1 control
points
POapla”'aPn

coincides with the (n + 1)th order spline curve approzimating the same control points
over the particular standard knot vector

{0,0,...,0,1,1,...,1}
consisting of n +1 0’s followed by n+1 1’s.

Proof. In the following example we’ll restrict ourselves to establishing the quadratic
case, leaving the general proof by induction to the mathematically inclined reader. O

Example 18.3. Show that the quadratic Bézier curve approximating the three
control points Fy, P, and P, coincides with the quadratic spline curve approximating
the same control points over the particular standard knot vector {0,0,0,1,1,1}.

Answer: Recall from the previous chapter that the Bézier curve approximating Py,
P, and Ps is
ep(u) = (1 —u)?Py +2(1 — w)uPy +u*Ps, we[0,1]
The quadratic spline approximating the same three points over the knot vector
T= {tQZO, tl :0, 152:07 t3:1, t4:1, t5:1} is
Cs(u) = N0,3(U)P0 + ]\/7173(U)P1 + N273(U)P2, u e [tz,tg] = [0, 1}
Therefore, we must show that spline blending functions of the preceding equation

match the Bernstein polynomial blending functions of the one before it, over the knot
interval [0,1]. Refer to formula (18.31) for Ny 3. The fourth line on the RHS gives

t3—u t3—u
ts —11 13 —t2
= (1-w)?

N073 (u) =

after plugging in the knot values {9 = ¢t; = t2 = 0 and t3 = 1 in the interval
to =0 <u <1 =t3, confirming a match with the first Bernstein polynomial.

We can use (18.31) for Ny 3 as well, making sure to increment the subscripts on
the RHS by 1. This gives

u—t1 t3—u t4—u u—tg

tg —1t1 t3 — 1o ty —to 13 —to

in u € [0,1], using ¢t; = to = 0 and t3 = ¢4 = 1, so matching the second Bernstein
polynomial. We’ll leave the reader to verify that Nz 3(u) = u?, u € [0, 1], completing
the proof.

Nl,g(u) =

In the opposite direction, the following is true because spline curves are piecewise
polynomial (from the way they are constructed) and polynomial curves are Bézier
(from Proposition 17.2).

Proposition 18.5. A spline curve is piecewise Bézier. a

Exercise 18.35. Why is it not possible that the preceding proposition can somehow
be strengthened to say that spline curves are, in fact, Bézier entirely, not just piecewise?
Hint: Bézier curves are smooth throughout.



18.3 B-Spline Surfaces Section 18.3
B-SPLINE SURFACES

The construction of B-spline surfaces as a continuum of B-spline curves parallels

exactly the construction of Bézier surfaces from Bézier curves described in Section 17.2.

See Figure 18.35 for the following.

Figure 18.35: Constructing the B-spline surface approximating an array of control points by
sweeping a B-spline curve. The B-spline curves depicted all interpolate both end control points,
which need not always be the case in practice.

Suppose that we are given an (n+ 1) x (n’ 4+ 1) array of control points
P;;, for 0<i<n, 0<j<n
and two spline orders m and m/, and a knot vector
T = {tg,t1,...,1-}, whose size satisfies |T|=r+1=n+1+m

(to ensure that number of knots = number of control points + order) and another
knot vector

T = {to,t1,...,t.}, whose size satisfies |1"|=7"+1=n'+1+m'

Think of the control points array as n+ 1 different sequences, each of n’ 4+ 1 control

points. In particular, the ith sequence, for 0 < ¢ < n, consists of P o, Pi1,..., P n,
lying along the ith row of the control points array. Construct the m/th order B-spline
curve ¢;, for 0 <4 < n, approximating the control points sequence P o, P 1,...,F; n/,

each using the knot vector 7" over the parameter space [tm/—1, tr—m/41]-

For each v in tpy—1 < v < ¢ /41, generate the mth order B-spline curve ¢”
approximating the control points sequence cy(v), ¢1(v), . . ., ¢, (v), using the knot vector
T over the parameter space [Ly,—1, tr—m+1]- The union of all these B-spline curves ¢,
for ;-1 < v <t _py41, then, is the B-spline surface s approximating the control
points array P; ;, 0 <i <mn, 0<j <n'. One may imagine s as being swept by ¢”, as
v varies from ¢y, —1 t0 tp /1.

Exercise 18.36. Prove that the parametric equation of the B-spline surface s
constructed as above is

n n'

s(u,0) =Y > N (N}, (v)P; (18.38)

i=0 j=0
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Chapter 18 for t;,1 < u < tp_ppqq and tr -1 < v < £ 41, and where me (respectively,
B-SPLINE Aff;%,) denotes the B-spline function N; ,,, over the knot vector T' (respectively, N; s

over T").

In other words, the surface is obtained from applying the blending function
NI, (w)NT,,(v) to the control point P; j, over the parameter domain t, 1 < u <
tr—m+17 tp—1 S v < t7”—m’+l-

Hint: Mimic the proof of (17.16) for a Bézier surface.

Exercise 18.37. Formulate an analogue for B-spline surfaces of Proposition 18.1
for curves.

We’ve given thus far an account of NURBS (non-uniform rational B-spline) theory,
except for the ‘R’ or rational, part. Instead of generally rational, being a ratio of two
polynomials, our functions have been all just polynomial. You could say that we have
covered NUPBS, or simply NUBS, as the default for B-splines is polynomial. We’ll
put the ‘R’ into NURBS in Chapter 20 with the help of projective spaces.

18.4 Drawing B-Spline Curves and Surfaces

NURBS - the full-blown rational version of B-splines — curves and surfaces are
implemented in the GLU library of OpenGL. Now that we have a fair amount of the
theory, the GLU NURBS interface will turn out to be simple to use, as the mapping
between theory and syntax is almost one-to-one. We'll, of course, restrict ourselves to
polynomial B-spline primitives for now, leaving the rational ones to a later chapter.

18.4.1 B-Spline Curves

We had already used OpenGL to draw polynomial B-spline curves in the programs
quadraticSplineCurve.cpp and cubicSplineCurvel.cpp earlier this chapter, with-
out caring then about the drawing syntax itself. Let’s look at this now.

The command

gluNurbsCurve ( *nurbsObject, knotCount, *knots, stride, *controlPoints,
order, type)

defines a B-spline curve which is pointed by nurbsObject. The parameter knotCount
is the number of knots in the knot vector — a one-dimensional array — pointed by
knots. The parameter order is the order of the spline curve, controlPoints points to
the one-dimensional array of control points, and stride is the number of floating point
values between the start of the data set for one control point and that of the next in
the control points array. The number of control points is not explicitly specified, but
computed by OpenGL with the help of (18.37):

number of control points = number of knots — order

The parameter type is GL_.MAP1_VERTEX_3 or GL_MAP1_VERTEX_4, according as the spline
curve is polynomial or rational.

A gluNurbsCurve() command must be bracketed between a gluBeginCurve ()-
gluEndCurve () pair of statements. The following statements from the drawing routine
of quadraticSplineCurve.cpp, defining a quadratic B-spline curve approximating
nine control points, should now be clear:

gluBeginCurve (nurbsObject) ;

gluNurbsCurve (nurbsObject, 12, knots, 3, ctrlpoints[0], 3,
GL_MAP1_VERTEX_3);

gluEndCurve (nurbsObject) ;

Eixercise 18.38. Refer to Section 10.3.1 for the syntax of the call glMap1f () defining
a Bézier curve and compare it with that of gluNurbsCurve().



There are certain initialization steps to be completed prior to a gluNurbsCurve ()
call. First, gluNewNurbsRenderer () returns the pointer to a NURBS object, which is
passed to the subsequent gluNurbsCurve() call. Then optional gluNurbsProperty ()
calls control the quality of the rendering, as well as other related attributes of the
curve. We refer the reader to the red book for a complete listing of possible parameter
values for gluNurbsProperty (). Our own usage is kept to a simple minimum — the
relevant statements from the setup () routine of quadraticSplineCurve.cpp are the
following:

nurbsObject = gluNewNurbsRenderer();
gluNurbsProperty (nurbsObject, GLU_SAMPLING_METHOD, GLU_PATH_LENGTH);
gluNurbsProperty (nurbsObject, GLU_SAMPLING_TOLERANCE, 10.0);

The last two statements specify that the longest length of a line segment in a strip
approximating a NURBS curve (or that of a quad edge, in the case of a mesh
approximating a NURBS surface) is at most 10.0 pixels.

Experiment 18.12. Change the last parameter of the statement
g
gluNurbsProperty (nurbsObject, GLU_SAMPLING_TOLERANCE, 10.0);

in the initialization routine of quadraticSplineCurve.cpp from 10.0 to 100.0. The
fall in resolution is noticeable as one sees in Figure 18.36. End

If you are wondering whether a B-spline curve can be drawn in a manner
similar to that using glMapGridif() followed by glEvalMeshi() for a Bézier
curve — sampling the curve uniformly through the parameter domain — the
answer is yes. Though we shall not use them ourselves the two requisite
calls for this purpose are gluNurbsProperty(*nurbsObject, GLU_SAMPLING_METHOD,
GLU_DOMAIN_DISTANCE) and gluNurbsProperty(*nurbsObject, GLU_U_STEP, walue).
The reader is referred to the red book for implementation details.

Experiment 18.13. Run cubicSplineCurve2.cpp, which draws the cubic spline
approximation of 30 movable control points, initially laid out on a circle, over a fixed
standard knot vector. Press space and backspace to cycle through the control points
and the arrow keys to move the selected control point. The delete key resets the
control points. Figure 18.37 is a screenshot of the initial configuration. The number
of control points being much larger than the order, the user has good local control.
Incidentally, note how managing large numbers of control points has been made
efficient with B-splines. Together 30 control points would have led to a 29th degree
polynomial Bézier curve, a computational nightmare; alternatively we could split the
control points into smaller sets, e.g., of size 4 for cubic curves, but then would come
the issue of smoothly joining the successive sub-curves. End

Exercise 18.39. (Programming) Use cubicSplineCurve2.cpp to draw a closed
loop like the one in Figure 18.38.

18.4.2 B-Spline Surfaces

The OpenGL syntax for a B-spline surface is a straightforward extension of that for a
B-spline curve. The gluNurbsSurface() command, which must be bracketed between
a gluBeginSurface ()-gluEndSurface () pair of statements, has the following form:

gluNurbsSurface ( *nurbsObject, uknotCount, *uknots, vknotCount, *vknots,
ustride, vstride, *controlPoints, worder, wvorder, type)

*vknots points to the knot vector used with the control point row, in other words, to
make the parameter curves ¢; in the discussion in Section 18.3 of a B-spline curve
sweeping a surface; *uknots points to the knot vector used with the control point
columns, i.e., to make the curves ¢’ in that discussion.

Section 18.4
DRAWING B-SPLINE
CURVES AND SURFACES

Figure 18.36:
Screenshot of

quadraticSplineCurve.cpp

with sampling tolerance
increased to 100.

~——

Figure 18.37:
Screenshot of
cubicSplineCurve2-
.cpp.

Figure 18.38: A cat or
whatever.
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Figure 18.39:
Screenshot of bicubic—
SplineSurface.cpp.

Figure 18.40:
Screenshot of
bicubicSplineSurface-
LitTextured.cpp.
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The parameter vknotCount is the number of knots in the vector pointed by *vknots,
vorder is the order of the B-spline curves ¢; and wvstride is the number of floating point
values between the data set for one control point and the next in a row of the control
points array. The parameters uknotCount, uorder and ustride represent similar values
for the control point columns.

The parameter type is GL_MAP2_VERTEX_3 or GL_MAP2_VERTEX_4 for polynomial or
rational surfaces, respectively; it can have other values as well to specify surface
normals and texture coordinates.

Experiment 18.14. Run bicubicSplineSurface.cpp, which draws a spline
surface approximation to a 15 x 10 array of control points, each of which the user can
move in 3-space. The spline is cubic in both parameter directions and a standard knot
vector is specified in each as well.

Press the space, backspace, tab and enter keys to select a control point. Move the
selected control point using the arrow and page up and down keys. The delete key
resets the control points. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn the surface. Figure 18.39
is a screenshot. End

Exercise 18.40. (Programming) Use bicubicSplineSurface.cpp to draw
separately a hilly terrain and a boat.

18.4.3 Lighting and Texturing a B-Spline Surface

Lighting and texturing a B-spline surface is similar to doing likewise for a Bézier
surface. Normals are required for lighting and the quickest way to create normals for
a B-spline surface is to generate them automatically with a call, as for Bézier surfaces,
to glEnable (GL_AUTO_NORMAL).

And, again as for Bézier surfaces, determining texture coordinates for a B-spline
surface requires, first, the creation of a “fake” B-spline surface in texture space on
the same parameter rectangle as the real one — the reader should review if need be
the discussion in Section 12.5 on specifying texture coordinates for a Bézier surfaces.
OpenGL, subsequently, assigns as texture coordinates to the image on the real surface
of a particular parameter point the image of that same point on the fake surface in
texture space. Code will clarify.

ExpeI‘iment 18.15. Run bicubicSplineSurfacelLitTextured.cpp, which sugar-
coats the spline surface of bicubicSplineSurface.cpp. Figure 18.40 is a screenshot.
The surface is illuminated by a single positional light source whose location is indicated
by a large black point. User interaction remains as in bicubicSplineSurface.cpp.
Note that pressing the ‘x’-‘Z’ keys turns only the surface, not the light source.

The bicubic B-spline surface, as well as the fake bilinear one in texture space, are
created by the following statements in the drawing routine:

gluBeginSurface (nurbsObject) ;
gluNurbsSurface(nurbsObject, 19, uknots, 14, vknots,
30, 3, controlPoints[0][0], 4, 4, GL_MAP2_VERTEX_3);
gluNurbsSurface(nurbsObject, 4, uTextureknots, 4, vTextureknots,
4, 2, texturePoints[0][0], 2, 2, GL_MAP2_TEXTURE_COORD_2);
gluEndSurface (nurbsObject) ;

We'll leave the reader to parse in particular the third statement and verify that it
creates a “pseudo-surface” — a 10 x 10 rectangle — in texture space on the same
parameter domain [0,12] x [0, 7] as the real one. Ena

Exercise 18.41. (Programming) Light and texture the B-spline surfaces you
created for Exercise 18.40.



18.4.4 Trimmed B-Spline Surface

A powerful design tool is to trim (i.e., excise or remove) part of a B-spline surface.

Here, first, is what happens theoretically.
Say the parametric specification of a surface s is given to be

z = f(u,v), y=g(u,v), z=h(u,v), where (u,v) €W = [u1,us] X [v1, V2]

The parametric equations map the rectangle W from wv-space onto the surface s
in zyz-space. Moreover, a loop (closed curve) ¢ on W maps to a loop ¢’ on s. See
Figure 18.41.

}}k p trimmed
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Figure 18.41: The loop ¢ on the parameter space W is mapped to the loop ¢’ on the surface s by
the parametric equations for s. Then s is trimmed by c.

If the part of s inside, or outside, the loop ¢’ is excised, then s is said to be trimmed
by the loop ¢ (probably, more accurate would be to say that it is trimmed by ¢’, but
the given usage is common). Figure 18.41 shows the inside trimmed. Loop c itself is
called the trimming loop.

OpenGL allows B-spline surfaces to be trimmed. We use the program
bicubicBsplineSurfaceTrimmed.cpp, as a running example to explain OpenGL
syntax for trimming.

ExpeI‘iment 18.16. Run bicubicBsplineSurfaceTrimmed.cpp, which shows the
surface of bicubicBsplineSurface.cpp trimmed by multiple loops. The code is
modified from the latter program, functionality remaining same. Figure 18.42(a) is a
screenshot. Ena

All the code relevant to trimming is in the drawing routine:

gluBeginSurface (nurbsObject) ;
gluNurbsSurface(nurbsObject, 19, uknots, 14, vknots,
30, 3, controlPoints[0][0], 4, 4, GL_MAP2_VERTEX_3);

gluBeginTrim(nurbsObject) ;
gluPwlCurve (nurbsObject, 5, boundaryPoints[0], 2,
GLU_MAP1_TRIM_2);
gluEndTrim(nurbsObject) ;

gluBeginTrim(nurbsObject) ;
gluPwlCurve (nurbsObject, 11, circlePoints[0], 2,
GLU_MAP1_TRIM_2);
gluEndTrim(nurbsObject) ;

gluBeginTrim(nurbsObject) ;
gluNurbsCurve (nurbsObject, 10, curveKnots, 2, curvePoints[0], 4,
GLU_MAP1_TRIM_2);
gluEndTrim(nurbsObject) ;

gluEndSurface (nurbsObject) ;
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Figure 18.42: (a) Screenshot of bicubicBsplineSurfaceTrimmed.cpp (b) The three trimming
loops — two polygonal and one B-spline.

Points to note:

1. Each trimming loop is defined within gluBeginTrim()-gluEndTrim() pair
of statements, which itself must lie within the gluBeginSurface()-glu-
EndSurface() pair. The trimming loop definitions are located after the
gluNurbsSurface () definition.

2. Each trimming loop must be a closed curve in the parameter space.
3. There are two ways to define a trimming loop:

(a) As a polygonal line loop defined by a

glPwlCurve (*nurbsObject, pointsCount, *pointsArray,
stride, type)

statement, where pointsCount is the number of vertices in an array of the
form {vg,v1,...,v,} pointed by pointsArray (it is required that vg = vy,).
There are two such polyline trimming loops in the program (see Fig-
ure 18.42(b)):

(i) The five vertices (first and last equal) of one are in the array
boundaryPoints, describing the rectangular boundary of the parameter
space itself, oriented counter-clockwise. We’'ll soon see why this
particular bounding trimming loop is required.

(ii) The eleven vertices (again, first and last equal) of the other are in the
array circlePoints, equally spaced along a circle, oriented clockwise.

(b) As a B-spline loop defined by

gluNurbsCurve (nurbsObject, knotCount, *knots, stride,
*controlPoints, order, type)

In the program there is a single such B-spline trimming loop, whose six
control points (first and last equal) are in the array curvePoints oriented
clockwise (Figure 18.42(b)).

4. The part outside a trimming loop oriented counter-clockwise is trimmed, while
that inside a trimming loop oriented clockwise is trimmed.

Accordingly, the first trimming polyline loop of the program, which bounds the
parameter space going counter-clockwise, trims off the exterior of the drawn
surface, not trimming the surface itself per se. The other two trimming loops
actually create holes in the surface.

EXeI‘Cise 18.42. Programmin Draw the forbidding terrain of an uninhabited
g
planet with VO]C&HOGS, craters7 lakes of lava7 and such.



18.5 Summary, Notes and More Reading

We have learned a fair amount of the theory underlying the widely-used class of 3D
design primitives — B-splines, both curves and surfaces. Emphasis was on motivating
each new concept. We did not want to pull stuff out of a hat. A test if we were
successful is for the reader to deduce some formula, e.g., (18.18) for the first quadratic
B-spline Ny 3 over a uniform knot vector or the Cox-de Boor-Mansfield recurrence
(18.30), using just pencil and paper, and not referring again to the text. This chapter
prepares the reader, as well, for the rational version of the theory — NURBS — coming
up in Chapter 20.

As for OpenGL, we learned not only how to draw B-spline curves and surfaces,
but to illuminate, texture and trim the latter as well.

While B-spline theory is extensive, material we covered in this chapter of the
polynomial B-spline primitives, together with what is covered in Chapter 20 of NURBS,
is ample for an applications programmer to function knowledgeably. However, the
reader is well-advised to expand her knowledge, particularly, of such practical topics
as “knot insertion”, “degree elevation”, etc. It’s easy enough given the number of
excellent books available — Bartels et al. [9], Farin [45], Mortenson [97], Piegl & Tiller
[113] and Rogers & Adams [120] are a few that come to mind. The mathematically
inclined reader, in particular, will find much to fascinate her in the more specialized
nooks and crannies. Advanced 3D CG books, e.g., Akenine-Méller, Haines & Hoffman
[1], Buss [21], Slater et al. [137] and Watt [150], each have a presentation of B-spline
theory as well.

B-spline functions were first studied in the 1800s by the Russian mathematician
Nicolai Lobachevsky. However, the modern theory began with Schoenberg’s [128]
application of spline functions to data smoothing and received particular impetus with
the discovery in 1972 of the recursive formula (18.30) for B-spline functions by Cox
[29], de Boor [33] and Mansfield. It has since seen explosive growth and B-spline (and
NURBS) primitives are de rigueur in modern-day CG design.
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