
i
i

i
i

i
i

i
i

Computer Graphics Through
OpenGL: From Theory to
Experiments

4th Edition

by Sumanta Guha

Chapman & Hall/CRC

v

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Experimenter Software
(Prepared by Chansophea Chuon and Sumanta Guha)

This file is to help you run the book experiments. It’s in pdf format listing all the
book experiments with each experiment’s text copied in from the book, and with
clickable hyperlinks on top (Chapters 1 and 17 excepted). One link brings up the
source program file in text form, while another brings up its Visual C++ Windows
project. Source code is not available for the four experiments in Chapter 1, the reader
being pointed instead to a folder with a Windows executable.

For experiments in the book asking simply to run a program, Experimenter brings
up the source code and corresponding project, while for those asking that a program
be modified significantly, the modified program – the modification being made either
in the actual code or commented-out code – and its project come up. For example,
an experiment often asks you to replace a part of a book program with a block of
code listed in the text. In this case, Experimenter will throw up the modified program
and project either ready to run or needing only a block to be uncommented, saving
you the trouble of typing or pasting. For trivial modifications of a program, though,
Experimenter links to the original program, leaving you to make changes.

Note: The names of the folders in ExperimenterSource – e.g., ExperimentRotate-
Teapot for Experiment 4.7 of the text – mostly do not appear in the text itself and
are of little relevance.

Experimenter is meant as a convenience; it certainly is not mandatory in order to
run the programs or experiments, which all work perfectly well stand-alone. However,
because of the way it is organized, Experimenter makes it easy to run the programs as
one follows the text so we strongly recommend that readers use it. Instructors will
find it particularly useful in synchronizing the presentation of theory with the running
of code.

Installing and using Experimenter : Download the directory ExperimenterSource

from the book’s website www.sumantaguha.com and install it as a subfolder of the
same folder where you have Experimenter.pdf (the file you are reading, also to be
found at the book’s site). It’s best to use Adobe Reader to open Experimenter.pdf as
other pdf readers might not be able to resolve the hyperlinks. Note that Experimenter
will be slow in bringing up a Windows project the first time, as various config files
have to be generated locally; it should be fast after that.

If you need to learn how to set up an environment in which to run OpenGL code,
then you will find a guide at the book’s website www.sumantaguha.com to installing
OpenGL and running the book’s programs.

Adding your own experiments to Experimenter : Presuming you are using Latex, first
include the hyperref package in your document. In our case, we did so with the line

\usepackage[pdftex]{hyperref}

Subsequently, add hyperlinks as follows (a sample from Experimenter’s Latex file):

Click for \ic{square.cpp}~~~

\href{run:ExperimenterSource/Chapter2/Square/square.cpp} vii

www.sumantaguha.com

i
i

i
i

i
i

i
i

{{\color{red}\ic{Program}}}~~~

\href{run:ExperimenterSource/Chapter2/Square/Square.vcxproj}

{{\color{red}\ic{Windows Project}}}

Once you have created your own Experimenter-like document with clickable hyperlinks,
you can mix and match pages of it with Experimenter by using a pdf document
manipulating tool.

We hope you find Experimenter of help as you read the book. All feedback is
welcome: send mail to sg@sumantaguha.com.

viii

i
i

i
i

i
i

i
i

Part I

Hello World

1

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 1
An Invitation to Computer Graphics

Executable for Windows is in the folder
ExperimenterSource/Chapter1/Ellipsoid.

Experiment 1.1. Open ExperimenterSource/Chapter1/Ellipsoid and run the
(Windows) executable there for the Ellipsoid program.* The program draws an
ellipsoid (an egg shape). Figure 1.16(a) shows the initial screen. There’s plenty of
interactivity to try as well. Press any of the four arrow keys, as well as the page up
and down keys, to change the shape of the ellipsoid, and ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’ and ‘Z’
to turn it.

It’s a simple object, but the three-dimensionality of it comes across rather nicely
does it not? As with almost all surfaces that we’ll be drawing ourselves, the ellipsoid
is made up of triangles. To see these press the space bar to enter wireframe mode.
Pressing space again restores the filled mode. Wireframe reveals the ellipsoid to be a
mesh of triangles decorated with large points. A color gradient has apparently been
applied toward the poles as well.

Drawing an ellipsoid with many triangles may seem a hard way to do things. The
reason to do this, often a surprise for the beginner, is that OpenGL offers only a tiny
set of low-level geometric primitives with which to make objects – in fact, points, lines
and triangles are, basically, it. So, a curved 3D object like an ellipsoid has to be made,
or, more accurately, approximated , using triangles. But, as we shall see as we go along,
the process really is not difficult.

That’s it, there’s really not much more to this program. It’s just a bunch of colored
triangles and points laid out in 3D space. The magic is in those last two words: 3D
space. 3D modeling is all about making things in 3D – not a flat plane – to create an
illusion of depth, even when viewing on a flat plane (the screen). End

Executable for Windows is in the folder
ExperimenterSource/Chapter1/AnimatedGarden.

Experiment 1.2. Our next program is animated. It creates a garden which grows and
grows and grows. You will find the executable in ExperimenterSource/Chapter1/-

AnimatedGarden. Press enter to start the animation; enter again to stop it. The delete
key restarts the animation, while the period key toggles between the camera rotating
and not. Again, the space key toggles between wireframe and filled. Figure 1.16(b) is
a screenshot a few seconds into the animation.

*Experimenter.pdf does not have clickable links to run the executables for this chapter. You’ll
have to go to the .exe file yourself. Clickable links to bring up source code and project files start
from the next chapter. 3

i
i

i
i

i
i

i
i

Chapter 1

An Invitation to

Computer Graphics

As you can see from the wireframe, there’s again a lot of triangles (in fact, the
flowers might remind you of the ellipsoid from the previous program). The plant stems
are thick lines and, if you look carefully, you’ll spot points as well. The one special
effect this program has that Ellipsoid did not is blending, as is not hard to see.
End

Executable for Windows is in the folder
ExperimenterSource/Chapter1/BezierShoe.

Experiment 1.3. The third program shows fairly fancy object modeling. It
makes a lady’s shoe with the help of so-called Bézier patches. The executable
is in ExperimenterSource/Chapter1/BezierShoe. Press ‘x’-‘Z’ to turn the shoe, ‘+’
and ‘-’ to zoom in and out, and the space bar to toggle between wireframe and filled.
Figure 1.16(c) is a screenshot.

Keep in mind that, as far as CG goes, the techniques involved in designing a shoe
are the same as for designing a spaceship! End

Executable for Windows is in the folder
ExperimenterSource/Chapter1/Dominos.

Experiment 1.4. Our final program is a movie which shows a Rube Goldberg-like
domino effect with “real” dominos. The executable is in ExperimenterSource/-

Chapter1/Dominos. Simply press enter to start and stop the movie. Figure 1.16(d) is
a screenshot from part way through.

This program has a bit of everything – textures, lighting, camera movement and,
of course, a nicely choreographed animation sequence. Neat, is it not? End

4

i
i

i
i

i
i

i
i

CHAPTER 2
On to OpenGL and 3D Computer
Graphics

Click for square.cpp Program Windows Project

Experiment 2.1. Run square.cpp.

Note: Visit the book’s website www.sumantaguha.com to download all of the book’s
code in the folder ExperimenterSource, as well as a guide to how to install OpenGL
and run the programs. Available for download too is Experimenter.pdf which lists
the programs in their book order and conveniently allows the user to click to open
each.

In the OpenGL window appears a black square over a white background. Figure 2.1
is an actual screenshot, but we’ll draw it as in Figure 2.2, bluish green standing in for
white in order to distinguish it from the paper. We are going to understand next how
the square is drawn, and gain some insight as well into the workings behind the scene.

End

Click for square.cpp Program Windows Project

Experiment 2.2. The main routine’s glutInitWindowSize() parameter values
determine the shape of the OpenGL window; in fact, generally, glutInitWindow-
Size(w, h) creates a window w pixels wide and h pixels high.

Change square.cpp’s initial glutInitWindowSize(500, 500) to glutInit-

WindowSize(300, 300) and then glutInitWindowSize(500, 250) (Figure 2.5).
The drawn square changes in size, and even shape, with the OpenGL window.
Therefore, its code coordinate values appear not to mean any kind of absolute screen
units. End

Click for square.cpp Program Windows Project

Experiment 2.3. Change only the viewing box of square.cpp by replacing
glOrtho(0.0, 100.0, 0.0, 100.0, -1.0, 1.0) with glOrtho(-100, 100.0,

-100.0, 100.0, -1.0, 1.0). The location of the square in the new viewing box is
different and, so as well, the result of shoot-and-print. Figure 2.12 is a screenshot and
Figure 2.13 explains how. End

Click for square.cpp Program Windows Project 5

i
i

i
i

i
i

i
i

Chapter 2

On to OpenGL and

3D Computer

Graphics

Experiment 2.4. Change the parameters of glutInitWindowPosition(x, y) in
square.cpp from the current (100, 100) to a few different values to determine the
location of the origin (0, 0) of the computer screen, as well as the orientation of the
screen’s own x-axis and y-axis. End

Click for square.cpp modified Program Windows Project

Experiment 2.5. Add another square by inserting the following right after the code
for the original square in square.cpp:

glBegin(GL POLYGON);

glVertex3f(120.0, 120.0, 0.0);

glVertex3f(180.0, 120.0, 0.0);

glVertex3f(180.0, 180.0, 0.0);

glVertex3f(120.0, 180.0, 0.0);

glEnd();

From the value of its vertex coordinates the second square evidently lies entirely
outside the viewing box.

If you run now there’s no sign of the second square in the OpenGL window. This
is because OpenGL clips the scene to within the viewing box before rendering, so
that objects or parts of objects drawn outside are not seen. Clipping is a stage in the
graphics pipeline. We’ll not worry about its implementation at this time, only the
effect. End

Click for square.cpp modified Program Windows Project

Experiment 2.6. For a more dramatic illustration of clipping, first replace the square
of the original square.cpp with a triangle by deleting its last vertex; in particular,
replace the polygon code with the following:

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glEnd();

See Figure 2.15. Next, lift the first vertex up the z-axis by changing it to
glVertex3f(20.0, 20.0, 0.5); lift it further by changing its z-value to 1.5 when
Figure 2.16 is a screenshot, then 2.5 and, finally, 10.0. Make sure you believe that
what you see in the last three cases is indeed a triangle clipped to within the viewing
box – Figure 2.17 may be helpful. End

Click for square.cpp Program Windows Project

Experiment 2.7. The color of the square in square.cpp is specified by the three
parameters of the glColor3f(0.0, 0.0, 0.0) statement in the drawScene() routine,
each of which gives the value of one of the three primary components, blue, green and
red .

Determine which of the three parameters of glColor3f() specifies the blue, green
and red components by setting in turn each to 1.0 and the others to 0.0 (e.g.,
Figure 2.21 shows one case). In fact, further verify the following table for every
possible combination of the values 0.0 and 1.0 for the primary components.6

i
i

i
i

i
i

i
i

Call Color
glColor3f(0.0, 0.0, 0.0) Black
glColor3f(1.0, 0.0, 0.0) Red
glColor3f(0.0, 1.0, 0.0) Green
glColor3f(0.0, 0.0, 1.0) Blue
glColor3f(1.0, 1.0, 0.0) Yellow
glColor3f(1.0, 0.0, 1.0) Magenta
glColor3f(0.0, 1.0, 1.0) Cyan
glColor3f(1.0, 1.0, 1.0) White

End

Click for square.cpp modified Program Windows Project

Experiment 2.8. Add the additional color declaration statement glColor3f(1.0,
0.0, 0.0) just after the existing one glColor3f(0.0, 0.0, 0.0) in the drawing
routine of square.cpp so that the foreground color block becomes

glColor3f(0.0, 0.0, 0.0);

glColor3f(1.0, 0.0, 0.0);

The square is drawn red like the one in Figure 2.21 because the current value or state
of the foreground color is red when each of its vertices is specified. End

Click for square.cpp modified Program Windows Project

Experiment 2.9. Replace the polygon declaration part of square.cpp with the
following to draw two squares:

glColor3f(1.0, 0.0, 0.0);

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

glColor3f(0.0, 1.0, 0.0);

glBegin(GL POLYGON);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(60.0, 40.0, 0.0);

glVertex3f(60.0, 60.0, 0.0);

glVertex3f(40.0, 60.0, 0.0);

glEnd();

A small green square appears inside a larger red one (Figure 2.22). Obviously, this
is because the foreground color is red for the first square, but green for the second.
One says that the color red binds to the first square – or, more precisely, to each of
its four vertices – and green to the second square. These bound values specify the
color attribute of either square. Generally, the values of those state variables which
determine how it is rendered collectively form a primitive’s attribute set.

Flip the order in which the two squares appear in the code by cutting the seven
statements which specify the red square and pasting them after those to do with the
green one. The green square is overwritten by the red one and no longer visible. This
is because at the end of the day an OpenGL program is still a C++ program which
processes code line-by-line, so objects are drawn in their code order . End 7

i
i

i
i

i
i

i
i

Chapter 2

On to OpenGL and

3D Computer

Graphics

Click for square.cpp modified Program Windows Project

Experiment 2.10. Replace the polygon declaration part of square.cpp with:

glBegin(GL POLYGON);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glVertex3f(80.0, 80.0, 0.0);

glColor3f(1.0, 1.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

The different color values bound to the four vertices of the square are evidently
interpolated over the rest of the square as you can see in Figure 2.23. In fact, this is
most often the case with OpenGL: numerical attribute values specified at the vertices
of a primitive are interpolated throughout its interior. In a later chapter we’ll see
exactly what it means to interpolate and how OpenGL goes about the task. End

Click for square.cpp modified Program Windows Project

Experiment 2.11. Replace glBegin(GL POLYGON) with glBegin(GL POINTS) in
square.cpp and make the point size bigger with a call to glPointSize(5.0) – the
default size being 1.0 – so that the part drawing an object now is

glPointSize(5.0); // Set point size.

glBegin(GL POINTS);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

See Figure 2.24. End

Click for square.cpp modified Program Windows Project

Experiment 2.12. Continue the previous experiment, replacing GL POINTS with
GL LINES, GL LINE STRIP and, finally, GL LINE LOOP. See Figures 2.25-2.27. The
thickness of lines is set by glLineWidth(width). Change the parameter value of this
call in the program, currently the default 1.0, to see the difference. End

Click for square.cpp modified Program Windows Project

Experiment 2.13. Replace the polygon declaration part of square.cpp with:

glBegin(GL TRIANGLES);

glVertex3f(10.0, 90.0, 0.0);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(35.0, 75.0, 0.0);

glVertex3f(30.0, 20.0, 0.0);

glVertex3f(90.0, 90.0, 0.0);

glVertex3f(80.0, 40.0, 0.0);

glEnd();

See Figure 2.29. End8

i
i

i
i

i
i

i
i

Click for square.cpp modified Program Windows Project

Experiment 2.14. Continue the preceding experiment by inserting the call
glPolygonMode(GL FRONT AND BACK, GL LINE) in the drawing routine and, further,
replacing GL TRIANGLES with GL TRIANGLE STRIP. The relevant part of the display
routine then is as below:

glPolygonMode(GL FRONT AND BACK, GL LINE);

glBegin(GL TRIANGLE STRIP);

glVertex3f(10.0, 90.0, 0.0);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(35.0, 75.0, 0.0);

glVertex3f(30.0, 20.0, 0.0);

glVertex3f(90.0, 90.0, 0.0);

glVertex3f(80.0, 40.0, 0.0);

glEnd();

See Figure 2.30. End

Click for square.cpp modified Program Windows Project

Experiment 2.15. Replace the polygon declaration part of square.cpp with:

glPolygonMode(GL FRONT AND BACK, GL LINE);

glBegin(GL TRIANGLE FAN);

glVertex3f(10.0, 10.0, 0.0);

glVertex3f(15.0, 90.0, 0.0);

glVertex3f(55.0, 75.0, 0.0);

glVertex3f(80.0, 30.0, 0.0);

glVertex3f(90.0, 10.0, 0.0);

glEnd();

See Figure 2.33. End

Click for square.cpp modified Program Windows Project

Experiment 2.16. Replace the polygon declaration part of square.cpp with

glRectf(20.0, 20.0, 80.0, 80.0);

to see the exact same square (Figure 2.34) of the original square.cpp. End

Click for square.cpp modified Program Windows Project

Experiment 2.17. Replace the polygon declaration of square.cpp with:

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 50.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

You see a convex 5-sided polygon (like the one in Figure 2.36(a)). End

Click for square.cpp modified Program Windows Project 9

i
i

i
i

i
i

i
i

Chapter 2

On to OpenGL and

3D Computer

Graphics

Experiment 2.18. Replace the polygon declaration of square.cpp with:

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

Display it both filled and outlined using appropriate glPolygonMode() calls. A non-
convex quadrilateral is drawn in either case (Figure 2.36(b)). Next, keeping the same
cycle of vertices as above, list them starting with glVertex3f(80.0, 20.0, 0.0)

instead:

glBegin(GL POLYGON);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glEnd();

Make sure to display it both filled and outlined. When filled it’s a triangle, while
outlined it’s a non-convex quadrilateral (Figure 2.36(c)) identical to the one output
earlier! Since the cycle of the vertices around the quad is unchanged, only starting at
a different point, shouldn’t the output still be as in Figure 2.36(b), both filled and
outlined? End

Click for circle.cpp Program Windows Project

Experiment 2.19. Run circle.cpp. Increase the number of vertices in the line
loop

glBegin(GL LINE_LOOP);

for(i = 0; i < numVertices; ++i)

{
glColor3f((float)rand()/(float)RAND MAX,

(float)rand()/(float)RAND MAX,

(float)rand()/(float)RAND MAX);

glVertex3f(X + R * cos(t), Y + R * sin(t), 0.0);

t += 2 * M PI / numVertices;

}
glEnd();

by pressing ‘+’ till it “becomes” a circle, as in the screenshot of Figure 2.39. Press ‘-’
to decrease the number of vertices. The randomized colors are a bit of eye candy.

Note: M PI is the constant representing π in the <cmath> library. End

Click for parabola.cpp Program Windows Project

Experiment 2.20. Run parabola.cpp. Press ‘+/-’ to increase/decrease the number
of vertices of the approximating line strip. Figure 2.41 is a screenshot with enough
vertices to make a smooth-looking parabola.

The vertices are equally spaced along the x-direction. The parametric equations
implemented are

x = 50 + 50t, y = 100t2, z = 0, −1 ≤ t ≤ 1

the constants being chosen so that the parabola is centered in the window. End10

i
i

i
i

i
i

i
i

Click for circularAnnuluses.cpp Program Windows Project

Experiment 2.21. Run circularAnnuluses.cpp. Three identical-looking red
circular annuluses (Figure 2.44) are drawn in three different ways:

i) Upper-left: There is not a real hole. The white disc overwrites the red disc as it
appears later in the code:

glColor3f(1.0, 0.0, 0.0);

drawDisc(20.0, 25.0, 75.0, 0.0);

glColor3f(1.0, 1.0, 1.0);

drawDisc(10.0, 25.0, 75.0, 0.0);

Note: The first parameter of the subroutine drawDisc() is the radius and the
remaining three the coordinates of the center.

ii) Upper-right: There is not a real hole either. A white disc is drawn closer to the
viewer than the red disc thus blocking it out:

glEnable(GL DEPTH TEST);

glColor3f(1.0, 0.0, 0.0);

drawDisc(20.0, 75.0, 75.0, 0.0);

glColor3f(1.0, 1.0, 1.0);

drawDisc(10.0, 75.0, 75.0, 0.5);

glDisable(GL DEPTH TEST);

Observe that the z-value of the white disc’s center is greater than the red disc’s,
bringing it closer to the viewing face. We’ll discuss momentarily the mechanics
of one primitive blocking out another.

iii) Lower: A true circular annulus with a real hole:

if (isWire) glPolygonMode(GL FRONT, GL LINE);

else glPolygonMode(GL FRONT, GL FILL);

glColor3f(1.0, 0.0, 0.0);

glBegin(GL TRIANGLE STRIP);

. . .
glEnd();

Press the space bar to see the wireframe of a triangle strip. End

Click for helix.cpp Program Windows Project

Experiment 2.22. Okay, run helix.cpp now. All we see is a circle as in Figure 2.48!
There’s no sign of any coiling up or down. The reason, of course, is that the
orthographic projection onto the viewing face flattens the helix. Let’s see if it makes
a difference to turn the helix upright, in particular, so that it coils around the y-axis.
Accordingly, replace the statement

glVertex3f(R * cos(t), R * sin(t), t - 60.0);

in the drawing routine with

glVertex3f(R * cos(t), t, R * sin(t) - 60.0);

Hmm, not a lot better (Figure 2.49). End

Click for helix.cpp Program Windows Project 11

i
i

i
i

i
i

i
i

Chapter 2

On to OpenGL and

3D Computer

Graphics

Experiment 2.23. Fire up the original helix.cpp program. Replace orthographic
projection with perspective projection; in particular, replace the projection statement

glOrtho(-50.0, 50.0, -50.0, 50.0, 0.0, 100.0);

with

glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);

You can see a real spiral now (Figure 2.52). View the upright version as well
(Figure 2.53), replacing

glVertex3f(R * cos(t), R * sin(t), t - 60.0);

with

glVertex3f(R * cos(t), t, R * sin(t) - 60.0);

A lot better than the orthographic version is it not?! End

Click for moveSphere.cpp Program Windows Project

Experiment 2.24. Run moveSphere.cpp, which simply draws a movable sphere
in the OpenGL window. Press the left, right, up and down arrow keys to move the
sphere, the space bar to rotate it and ‘r’ to reset.

The sphere appears distorted as it nears the boundary of the window, as you
can see from the screenshot in Figure 2.54. Can you guess why? Ignore the code,
especially unfamiliar commands such as glTranslatef() and glRotatef(), except
for that projection is perspective.

This kind of peripheral distortion of a 3D object is unavoidable in any viewing
system which applies perspective projection. It happens with a real camera as well,
but we don’t notice it as much because the field of view when snapping pictures is
usually quite large with objects of interest tending to be centered, and the curved lens
is designed to compensate as well. End

Click for strangeK.cpp Program Windows Project

Experiment 2.25. Run strangeK.cpp, which shows how one might take the edict
of minimizing the number of triangle strips a bit far. Press space to see the wireframe
of a perfectly good ‘K’ (Figure 2.56).

Interestingly, though, the letter is drawn as a single triangle strip with 17 vertices
within the one glBegin(GL TRIANGLE STRIP)-glEnd(). We ask the reader to parse
this strip as follows: sketch the K on on a piece of paper, label the vertices v0, v1, . . . , v16
according to their code order (e.g., the lower left vertex of the straight side is v0, to its
right is v1, and so on, and, yes, some vertices are labeled multiple times), and, finally,
examine each one of the strip’s 15 component triangles (best done by following the
sliding window scheme as in Figure 2.31).

Did you spot a few so-called degenerate triangles, e.g., one with all its vertices
along a straight line or with coincident vertices? Such triangles, which are not really
2D, are best avoided when drawing a 2D figure. End

Click for hemisphere.cpp Program Windows Project

Experiment 2.26. Run hemisphere.cpp, which implements exactly the strategy
just described. You can verify this from the snippet that draws the hemisphere:12

i
i

i
i

i
i

i
i

for(j = 0; j < q; j++)

{
// One latitudinal triangle strip.

glBegin(GL TRIANGLE STRIP);

for(i = 0; i <= p; i++)

{
glVertex3f(R * cos((float)(j+1)/q * M PI/2.0) *

cos(2.0 * (float)i/p * M PI),

R * sin((float)(j+1)/q * M PI/2.0),

-R * cos((float)(j+1)/q * M PI/2.0) *

sin(2.0 * (float)i/p * M PI));

glVertex3f(R * cos((float)j/q * M PI/2.0) *

cos(2.0 * (float)i/p * M PI),

R * sin((float)j/q * M PI/2.0),

-R * cos((float)j/q * M PI/2.0) *

sin(2.0 *(float)i/p * M PI));

}
glEnd();

}

Increase/decrease the number of longitudinal slices by pressing ‘P/p’. In-
crease/decrease the number of latitudinal slices by pressing ‘Q/q’. Turn the hemisphere
about the axes by pressing ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’ and ‘Z’. See Figure 2.58 for a screenshot.

End

Click for hemisphere.cpp Program Windows Project

Experiment 2.27. Playing around a bit with the code will help clarify the
construction of the hemisphere:

(a) Change the range of the hemisphere’s outer loop from

for(j = 0; j < q; j++)

to

for(j = 0; j < 1; j++)

Only the bottom strip is drawn. The keys ‘P/p’ and ‘Q/q’ still work.

(b) Change it again to

for(j = 0; j < 2; j++)

Now, the bottom two strips are drawn.

(c) Reduce the range of both loops:

for(j = 0; j < 1; j++)

. . .
for(i = 0; i <= 1; i++)

. . .

The first two triangles of the bottom strip are drawn.

(d) Then, increase the range of the inner loop by 1:

for(j = 0; j < 1; j++)

. . .
for(i = 0; i <= 2; i++)

. . . 13

i
i

i
i

i
i

i
i

Chapter 2

On to OpenGL and

3D Computer

Graphics

The first four triangles of the bottom strip are drawn. End

Click for squareGLFW.cpp Program Windows Project

Experiment 2.28. You will need to configure your environment to include GLFW
before running squareGLFW.cpp. How to do this is described in the comments at the
top of the program file. This program has the exact same functionality as square.cpp,
only with GLFW replacing FreeGLUT. Figure 2.62 is a screenshot. End

14

i
i

i
i

i
i

i
i

Part II

Tricks of the Trade

15

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 3
An OpenGL Toolbox

Click for squareAnnulus1.cpp Program Windows Project

Experiment 3.1. Run squareAnnulus1.cpp. A screenshot is seen in Figure 3.1(a).
Press the space bar to see the wireframe in Figure 3.1(b).

It is a plain-vanilla program which draws the square annulus diagrammed in
Figure 3.2 with a single giant triangle strip containing 10 vertices and their color
attributes (the last two vertices being identical to the first two in order to close the
strip):

glBegin(GL_TRIANGLE_STRIP);

glColor3f(0.0, 0.0, 0.0);

glVertex3f(30.0, 30.0, 0.0); // Vertex 0

glColor3f(1.0, 0.0, 0.0);

glVertex3f(10.0, 10.0, 0.0); // Vertex 1

glColor3f(0.0, 1.0, 0.0);

glVertex3f(70.0, 30.0, 0.0); // Vertex 2

...

glColor3f(0.0, 0.0, 0.0);

glVertex3f(30.0, 30.0, 0.0); // Vertex 8 = Vertex 0

glColor3f(1.0, 0.0, 0.0);

glVertex3f(10.0, 10.0, 0.0); // Vertex 9 = Vertex 1

glEnd();

End

Click for squareAnnulus2.cpp Program Windows Project

Experiment 3.2. Run squareAnnulus2.cpp.
It draws the same annulus as squareAnnulus1.cpp, except that the vertex

coordinates and color data are now separately stored in two-dimensional global
arrays, vertices and colors, respectively. Moreover, in each iteration, the loop

glBegin(GL_TRIANGLE_STRIP);

for(int i = 0; i < 10; ++i)

{
glColor3fv(colors[i%8]);

glVertex3fv(vertices[i%8]);

}
glEnd();

retrieves a vector of coordinate values by the pointer form (also called vector form)
of vertex declaration, namely, glVertex3fv(*pointer), and as well a vector of color
values with the pointer form glColor3fv(*pointer). End 17

i
i

i
i

i
i

i
i

Chapter 3

An OpenGL Toolbox

Click for squareAnnulus3.cpp Program Windows Project

Experiment 3.3. Run squareAnnulus3.cpp.
It again draws the same colorful annulus as before. The coordinates and color data

of the vertices are stored in global vertex arrays, vertices and colors, respectively,
as in squareAnnulus2.cpp, except, now, the arrays are flat and not 2D (OpenGL
assumes 1D arrays but, because of the way C++ stores arrays, we could, in fact, have
specified vertices and colors as 2D arrays exactly as in squareAnnulus2.cpp if we
had so chosen). End

Click for squareAnnulus4.cpp Program Windows Project

Experiment 3.4. Run squareAnnulus4.cpp.
The code is even more concise with the single draw call

glDrawElements(GL_TRIANGLE_STRIP, 10, GL_UNSIGNED_INT, stripIndices)

replacing the entire glBegin(GL TRIANGLE STRIP)-glEnd() block. End

Click for circleDrawElements.cpp Program Windows Project

Experiment 3.5. Run circleDrawElements.cpp, which modifies circle.cpp of
the last chapter to draw the same circle with a single glDrawElements(GL LINE LOOP,

. . .) call. Note that the commands to fill the vertex, color and indices arrays are in
the drawing routine, instead of more efficiently within initialization, because these
arrays have to be refilled if the number of circle edges changes. See Figure 3.3 for a
screenshot. End

Click for squareAnnulusAndTriangle.cpp Program Windows Project

Experiment 3.6. Run squareAnnulusAndTriangle.cpp, which adds a triangle
inside the annulus of the squareAnnulus*.cpp programs. See Figure 3.4 for a
screenshot. End

Click for hemisphereMultidraw.cpp Program Windows Project

Experiment 3.7. Run hemisphereMultidraw.cpp, whose sole purpose is to draw
the loop

for(j = 0; j < q; j++)

{
// One latitudinal triangle strip.

glBegin(GL_TRIANGLE_STRIP);

...

}

of triangle strips of hemisphere.cpp using instead the single

glMultiDrawElements(GL_TRIANGLE_STRIP, countIndices,

GL_UNSIGNED_BYTE, (const void **)indices, q)

command. Figure 3.7 is a screenshot. End

Click for squareAnnulusVBO.cpp Program Windows Project18

i
i

i
i

i
i

i
i

Experiment 3.8. Fire up squareAnnulusVBO.cpp, which modifies squareAnnulus4.-
cpp to store vertex-related data in VBOs. Three statements in the middle of
the drawing routine are currently commented out. Leave them this way for now.
Figure 3.10 is a screenshot. End

Click for hemisphereMultidrawVBO.cpp Program Windows Project

Experiment 3.9. Run hemisphereMultidrawVBO.cpp. A screenshot is in Fig-
ure 3.11. End

Click for squareAnnulusAndTriangleVAO.cpp Program Windows Project

Experiment 3.10. Run squareAnnulusAndTriangleVAO.cpp. This program builds
on squareAnnulusVBO.cpp. We add to it the triangle from squareAnnulusAnd-

Triangle.cpp in order to have two VAOs. Note, however, that we separate
the vertex coordinates and color arrays of the triangle, because interleaved, as
in squareAnnulusAndTriangle.cpp, they are a bit tricky to manage in a VBO.
Otherwise, the outputs of the current program and squareAnnulusAndTriangle.cpp

are identical – see Figure 3.13. End

Click for helixList.cpp Program Windows Project

Experiment 3.11. Run helixList.cpp, which shows six copies of the same helix,
variously transformed and colored. Figure 3.14 is a screenshot. End

Click for multipleLists.cpp Program Windows Project

Experiment 3.12. Run multipleLists.cpp. See Figure 3.15 for a screenshot.
Three display lists are defined in the program to draw: a red triangle, a green
rectangle and a blue pentagon, respectively. End

Click for fonts.cpp Program Windows Project

Experiment 3.13. Run fonts.cpp. Displayed are the various fonts available
through the FreeGLUT library. See Figure 3.17. End

Click for mouse.cpp Program Windows Project

Experiment 3.14. Run mouse.cpp. Click the left mouse button to draw points
on the canvas and the right one to exit. Figure 3.18 is a screenshot of “OpenGL”
scrawled in points. End

Click for mouseMotion.cpp Program Windows Project

Experiment 3.15. Run mouseMotion.cpp, which enhances mouse.cpp by allowing
the user to drag the newly created point using the mouse with the left button still
pressed. End

Click for mouseWheel.cpp Program Windows Project 19

i
i

i
i

i
i

i
i

Chapter 3

An OpenGL Toolbox

Experiment 3.16. Run mouseWheel.cpp, which further enhances mouseMotion.cpp
with the capability to change the size of the last point drawn by turning the mouse
wheel. End

Click for moveSphere.cpp Program Windows Project

Experiment 3.17. Run moveSphere.cpp, a program we saw earlier in Experi-
ment 2.24. Figure 3.20 is a screenshot. Press the left, right, up and down arrow keys
to move the sphere, the space bar to rotate it and ‘r’ to reset.

Note how the specialKeyInput() routine is written to enable the arrow keys to
change the location of the sphere. Subsequently, this routine is registered in main()

as the handling routine for non-ASCII entry. End

Click for menus.cpp Program Windows Project

Experiment 3.18. Run menus.cpp. Press the right mouse button for menu options
which allow you to change the color of the initially red square or exit. Figure 3.21 is a
screenshot. End

Click for lineStipple.cpp Program Windows Project

Experiment 3.19. Run lineStipple.cpp. Press the space bar to cycle through
five different stipples. A screenshot is shown in Figure 3.22. End

Click for canvas.cpp Program Windows Project

Experiment 3.20. Run canvas.cpp, a simple program to draw on a flat canvas
with menu and mouse functionality.

Left click on an icon to select it. Then left click on the drawing area to draw –
click once to draw a point, twice to draw a line or rectangle. Right click for a pop-up
menu. Figure 3.24 is a screenshot. End

Click for glutObjects.cpp Program Windows Project

Experiment 3.21. Run glutObjects.cpp. Press the arrow keys to cycle through
the various FreeGLUT objects and ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn them. Figure 3.26
shows the teapot. End

Click for clippingPlanes.cpp Program Windows Project

Experiment 3.22. Run clippingPlanes.cpp, which augments circularAnnul-

uses.cpp with two additional clipping planes which can be toggled on and off by
pressing ‘0’ and ‘1’, respectively.

The first plane (GL CLIP PLANE0) clips off the half-space −z + 0.25 < 0, i.e.,
z > 0.25, removing the floating white disc of the annulus on the upper-right. The
second one (GL CLIP PLANE1) clips off the half-space x + 0.5y < 60.0, which is the
space below an angled plane parallel to the z-axis. Figure 3.28 is a screenshot of both
clipping planes activated. End

Click for hemispherePerspective.cpp Program Windows Project20

i
i

i
i

i
i

i
i

Experiment 3.23. Run hemispherePerspective.cpp, which replaces the original
glFrustum() statement (still there in comments) of hemisphere.cpp with the
gluPerspective() statement just computed. Figure 3.33 is a screenshot. The
output of the program with either the original glFrustum() call or the equivalent
gluPerspective() is the same, as it should be. End

Click for hemispherePerspective.cpp Program Windows Project

Experiment 3.24. Run again hemispherePerspective.cpp.
The initial OpenGL window is a square 500× 500 pixels. Drag a corner to change

its shape, making it tall and thin. The hemisphere is distorted to become ellipsoidal
(Figure 3.34(a)). Distortion is identical with either

glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0);

or

gluPerspective(90.0, 1.0, 5.0, 100.0);

as the two statements are equivalent. Next, replace the projection statement with

gluPerspective(90.0, (float)w/(float)h, 5.0, 100.0);

which sets the aspect ratio of the viewing frustum equal to that of the OpenGL
window. Resize the window – the hemisphere is no longer distorted (Figure 3.34(b))!
End

Click for viewports.cpp Program Windows Project

Experiment 3.25. Run viewports.cpp where the screen is split into two
viewports, one defined by glViewport(0, 0, width/2.0, height) and the other
by glViewport(width/2.0, 0, width/2.0, height), with contents a square and
a circle, respectively. Figure 3.36 is a screenshot, where it should be clear from the
parameters of the two glViewport() calls why the viewports are as seen.

A vertical black line is drawn by the program at the left end of the second viewport
to separate the two. As the aspect ratio of both viewports differs from that of the
viewing face, the square and circle are squashed laterally. End

Click for multipleWindows.cpp Program Windows Project

Experiment 3.26. Run multipleWindows.cpp, which creates two top-level windows
(Figure 3.37). As you see in main(), after the size and position of the first window
is specified, it is created with the call glutCreateWindow("window 1"), following
which a block of four statements specify its initialization, display, resize and keyboard
routines, respectively. The first three of these routines are unique to the first window
while the second is shared by both.

The second window is then likewise created after its size and position are specified.
End

21

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Part III

Movers and Shapers

23

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 4
Transformation, Animation and
Viewing

Click for box.cpp Program Windows Project

Experiment 4.1. Run box.cpp, which shows an axis-aligned – i.e., with sides
parallel to the coordinate axes – FreeGLUT wireframe box of dimensions 5× 5× 5.
Figure 4.1 is a screenshot. Note the foreshortening – the back of the box appears
smaller than the front – because of perspective projection in the viewing frustum
specified by the glFrustum() statement.

Comment out the statement

glTranslatef(0.0, 0.0, -15.0);

What do you see now? Nothing ! We’ll explain why momentarily. End

Click for box.cpp Program Windows Project

Experiment 4.2. Successively replace the translation command of box.cpp with
the following, making sure that what you see matches your understanding of where
the command places the box. Keep in mind foreshortening, as well as clipping to
within the viewing frustum.

1. glTranslatef(0.0, 0.0, -10.0) (see Figure 4.4)

2. glTranslatef(0.0, 0.0, -5.0)

3. glTranslatef(0.0, 0.0, -25.0)

4. glTranslatef(10.0, 10.0, -15.0)

End

Click for box.cpp modified Program Windows Project

Experiment 4.3. Add a scaling command, in particular, replace the modeling
transformation block of box.cpp with:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glScalef(2.0, 3.0, 1.0); 25

i
i

i
i

i
i

i
i

Chapter 4

Transformation,

Animation and

Viewing

Figure 4.5 is a screenshot – compare with the unscaled box of Figure 4.1.
End

Click for box.cpp modified Program Windows Project

Experiment 4.4. An object less symmetric than a box is more interesting to work
with. Care for some teapot? Accordingly, change the modeling transformation and
object definition part of box.cpp to:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glScalef(1.0, 1.0, 1.0);

glutWireTeapot(5.0); // Teapot.

Of course, glScalef(1.0, 1.0, 1.0) does nothing and we see the original unscaled
teapot (Figure 4.7).

Next, successively change the scaling parameters by replacing the scaling command
with the ones below. In each case, make sure your understanding of the command
matches the change that you see in the shape of the teapot.

1. glScalef(2.0, 1.0, 1.0)

2. glScalef(1.0, 2.0, 1.0)

3. glScalef(1.0, 1.0, 2.0) End

Click for box.cpp modified Program Windows Project

Experiment 4.5. Replace the cube of box.cpp with a square whose sides are not
parallel to the coordinate axes. In particular, replace the modeling transformation
and object definition part of that program with:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glScalef(1.0, 3.0, 1.0);

glBegin(GL LINE LOOP);

glVertex3f(4.0, 0.0, 0.0);

glVertex3f(0.0, 4.0, 0.0);

glVertex3f(-4.0, 0.0, 0.0);

glVertex3f(0.0, -4.0, 0.0);

glEnd();

See Figure 4.10(a). Uncomment the scaling. Now, see Figure 4.10(b). The square
seems skewed to a parallelogram. End

Click for box.cpp modified Program Windows Project

Experiment 4.6. Add a rotation command by replacing the modeling transformation
and object definition part – we prefer a teapot – of box.cpp with:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(60.0, 0.0, 0.0, 1.0);

glutWireTeapot(5.0);26

i
i

i
i

i
i

i
i

Figure 4.11 is a screenshot.
The rotation command glRotatef(A, p, q, r) rotates an object about an axis

from the origin O = (0, 0, 0) to the point (p, q, r). The amount of rotation is A◦,
measured CCW (counter-clockwise) looking from (p, q, r) to the origin. In this
experiment, then, the rotation is 60◦ CCW looking down the z-axis. End

Click for box.cpp modified Program Windows Project

Experiment 4.7. Continuing with Experiment 4.6, successively replace the rotation
command with the ones below, in each case trying to match what you see with your
understanding of how the command should turn the teapot. (It can occasionally be a
bit confusing because of the perspective projection.)

1. glRotatef(60.0, 0.0, 0.0, -1.0)

2. glRotatef(-60.0, 0.0, 0.0, 1.0)

3. glRotatef(60.0, 1.0, 0.0, 0.0)

4. glRotatef(60.0, 0.0, 1.0, 0.0)

5. glRotatef(60.0, 1.0, 0.0, 1.0) End

Click for box.cpp modified Program Windows Project

Experiment 4.8. Appropriately modify the code of Experiment 4.6 to compare the
effects of each of the following pairs of rotation commands:

1. glRotatef(60.0, 0.0, 0.0, 1.0) and glRotatef(60.0, 0.0, 0.0, 5.0)

2. glRotatef(60.0, 0.0, 2.0, 2.0) and glRotatef(60.0, 0.0, 3.5, 3.5)

3. glRotatef(60.0, 0.0, 0.0, -1.0) and glRotatef(60.0, 0.0, 0.0, -7.5)

There is no difference in each case. One concludes that the rotation command
glRotatef(A, p, q, r) is equivalent to glRotatef(A,αp, αq, αr), where α is any
positive scalar. End

Click for box.cpp modified Program Windows Project

Experiment 4.9. Apply three modeling transformations by replacing the modeling
transformations block of box.cpp with:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glTranslatef(10.0, 0.0, 0.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

It seems the box is first rotated 45◦ about the z-axis and then translated right 10
units. See Figure 4.17(a). The first translation glTranslatef(0.0, 0.0, -15.0), of
course, serves to “kick” the box down the z-axis into the viewing frustum.

Next, interchange the last two transformations, namely, the rightward translation
and the rotation, by replacing the modeling transformations block with:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(10.0, 0.0, 0.0); 27

i
i

i
i

i
i

i
i

Chapter 4

Transformation,

Animation and

Viewing

It seems that the box is now first translated right and then rotated about the z-axis
causing it to rise. See Figure 4.17(b). End

Click for box.cpp modified Program Windows Project

Experiment 4.10. Modify the code of Experiment 4.5 to draw a square with a short
line segment above it, both translated to the right; precisely, replace the modeling
transformation and object definition part of box.cpp with:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glTranslatef(10.0, 0.0, 0.0);

glBegin(GL LINE LOOP);

glVertex3f(4.0, 0.0, 0.0);

glVertex3f(0.0, 4.0, 0.0);

glVertex3f(-4.0, 0.0, 0.0);

glVertex3f(0.0, -4.0, 0.0);

glEnd();

glBegin(GL LINES);

glVertex3f(0.0, 8.0, 0.0);

glVertex3f(0.0, 10.0, 0.0);

glEnd();

See Figure 4.19. Now, move the second translation statement
glTranslatef(10.0, 0.0, 0.0) to just after the glBegin(GL LINE LOOP) state-
ment. Are the square and segment still translated rightward? No! Experiment
with a few more placements of glTranslatef(10.0, 0.0, 0.0).

The conclusion is that OpenGL indeed treats objects as unitary: rogue
transformation statements within a glBegin(GL primitive)-glEnd() pair are ignored.

End

Click for box.cpp modified Program Windows Project

Experiment 4.11. Replace the entire display routine of the original box.cpp with:

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef(0.0, 10.0, 0.0);

glutWireSphere(2.0, 10, 8); // Sphere.

glFlush();

}28

i
i

i
i

i
i

i
i

See Figure 4.21(a) for a screenshot. The objects are a box and a sphere.
End

Click for box.cpp modified Program Windows Project

Experiment 4.12. Continuing with the previous experiment, uncomment the
glRotatef() statement. Figure 4.21(b) is a screenshot. End

Click for box.cpp modified Program Windows Project

Experiment 4.13. Repeat Experiment 4.12. The modeling transformation and
object definition part are as below:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

First, comment out the last two statements of the first modeling transformations
block as below (the first translation is always needed to place the entire scene in the
viewing frustum):

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);

// glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

The output is as depicted in Figure 4.23(a).
Next, uncomment glTranslatef(5.0, 0.0, 0.0) as below:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

// glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

The output is as in Figure 4.23(b). Finally, uncomment glRotatef(45.0, 0.0, 0.0,

1.0) as follows: 29

i
i

i
i

i
i

i
i

Chapter 4

Transformation,

Animation and

Viewing

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(5.0, 0.0, 0.0);

glutWireCube(5.0); // Box.

//More modeling transformations.

glTranslatef (0.0, 10.0, 0.0);

glutWireSphere (2.0, 10, 8); // Sphere.

glFlush();

The result is seen in Figure 4.23(c). Figure 4.23 shows the box’s local coordinate
system as well after each transition. Observe that the sphere is always 10 units
vertically above the box in the latter’s coordinate system, as one would expect from
the glTranslatef (0.0, 10.0, 0.0) call between the two. End

Click for relativePlacement.cpp Program Windows Project

Experiment 4.14. Run relativePlacement.cpp. Pressing the up arrow key once
causes the last statement, viz., drawBlueMan, of the following piece of code to be
executed:

glScalef(1.5, 0.75, 1.0);

glRotatef(30.0, 0.0, 0.0, 1.0);

glTranslatef(10.0, 0.0, 0.0);

drawRedMan; // Also draw grid in his local coordinate system.

glRotatef(45.0, 0.0, 0.0, 1.0);

glTranslatef(20.0, 0.0, 0.0);

drawBlueMan;

With each press of the up arrow we go back a statement and successively execute
that statement and the ones that follow it. The statements executed are in black text,
the rest gray. Pressing the down arrow key goes forward a statement. Figure 4.24 is a
screenshot after all transformations from the scaling onward have been executed. End

Click for box.cpp modified Program Windows Project

Experiment 4.15. We want to create a human-like character. Our plan is to start
by drawing the torso as an elongated cube and placing a round sphere as its head
directly on top of the cube (no neck for now). To this end replace the drawing routine
of box.cpp with:

void drawScene(void)

{
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(0.0, 0.0, 0.0);

glLoadIdentity();

glTranslatef(0.0, 0.0, -15.0);

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0); // Box torso.

glTranslatef(0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8); // Spherical head.30

i
i

i
i

i
i

i
i

glFlush();

}

Our calculations are as follows: (a) the scaled box is 5× 10× 5 and, being centered
at the origin, is 5 units long in the +y direction; (b) the sphere is of radius 2; (c)
therefore, if the sphere is translated 5 + 2 = 7 in the +y direction, then it should sit
exactly on top of the box (see Figure 4.25(a)).

It doesn’t work: the sphere is no longer round and is, moreover, some ways
above the box (Figure 4.25(b)). Of course, because the sphere is transformed by
glScalef(1.0, 2.0, 1.0) as well! So, what to do? A solution is to isolate the
scaling by placing it within a push-pop pair as below:

...

glTranslatef(0.0, 0.0, -15.0);

glPushMatrix();

glScalef(1.0, 2.0, 1.0);

glutWireCube(5.0); // Box torso.

glPopMatrix();

glTranslatef(0.0, 7.0, 0.0);

glutWireSphere(2.0, 10, 8); // Spherical head.

...

The resulting screenshot is Figure 4.25(c), which shows a round head on a neckless
torso as desired. End

Click for rotatingHelix1.cpp Program Windows Project

Experiment 4.16. Run rotatingHelix1.cpp where each press of space calls
the increaseAngle() routine to turn the helix. Note the glutPostRedisplay()

command in increaseAngle() which asks the screen to be redrawn. Keeping the
space bar pressed turns the helix continuously. Figure 4.27 is a screenshot. End

Click for rotatingHelix2.cpp Program Windows Project

Experiment 4.17. Run rotatingHelix2.cpp, a slight modification of rotatingHelix1.cpp,
where pressing space causes the routines increaseAngle() and NULL (do nothing) to
be alternately specified as idle functions.

The speed of animation is determined by the processor’s speed and availability to
execute the idle function – the user cannot influence it. End

Click for rotatingHelix3.cpp Program Windows Project

Experiment 4.18. Run rotatingHelix3.cpp, another modification of rotating-
Helix1.cpp, where the particular timer function animate() calls itself recursively after
animationPeriod number of msecs., by means of its own glutTimerFunc(animationPeriod,
animate, 1) statement.

The parameter value 1 passed to animate() is not used in this program. The
routine increaseAngle() called by animate() turns the helix as before. Figure 4.28
shows the animation scheme.

The user can vary the speed of animation by changing the value of animation-
Period by pressing the up and down arrow keys. End 31

i
i

i
i

i
i

i
i

Chapter 4

Transformation,

Animation and

Viewing

Click for rotatingHelixFPS.cpp Program Windows Project

Experiment 4.19. Run rotatingHelixFPS.cpp, which enhances rotatingHelix3.-
cpp adding the routine frameCounter() to count the number of times the drawScene()
routine is called, equivalently, the number of frames drawn, per second. The “fps” is
output every second to the debug window.

Caveat : The number of frames drawn per second by the GPU to the color buffer,
i.e., the number of completions of drawScene() per second, may not equal exactly
the number of frames drawn to the screen per second, the true fps. See Remark 4.8
a little further on, for example, for what may happen if a fast GPU is up against a
slower monitor.

The way the fps is output is with drawScene() incrementing the global frameCount
every time it is called, and frameCounter() outputting the value of frameCount
each second – note that frameCounter() calls itself every second because of
its glutTimerFunc(1000, frameCounter, 1) statement – while simultaneously
resetting the value of frameCount to 0. The if conditional in frameCounter()

is so that no fps is output when it is first called from setup() with value passed
being 0. End

Click for rotatingHelix2.cpp Program Windows Project

Experiment 4.20. Disable double buffering in rotatingHelix2.cpp by replacing
GLUT DOUBLE with GLUT SINGLE in the glutInitDisplayMode() call in main, and
replacing glutSwapBuffers() in the drawing routine with glFlush(). Ghostly is it
not?! End

Click for ballAndTorus.cpp Program Windows Project

Experiment 4.21. Run ballAndTorus.cpp. Press space to start the ball both
flying around (longitudinal rotation) and in and out (latitudinal rotation) of the torus.
Press the up and down arrow keys to change the speed of the animation. Press ‘x/X’,
‘y/Y’ and ‘z/Z’ to change the viewpoint. Figure 4.31 is a screenshot.

The animation of the ball is interesting and we’ll deconstruct it. Comment out
all the modeling transformations in the ball’s block, except the last translation, as
follows:

// Begin revolving ball.

// glRotatef(longAngle, 0.0, 0.0, 1.0);

// glTranslatef(12.0, 0.0, 0.0);

// glRotatef(latAngle, 0.0, 1.0, 0.0);

// glTranslatef(-12.0, 0.0, 0.0);

glTranslatef(20.0, 0.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 10, 10);

// End revolving ball.

The ball is centered at (20, 0, 0), its start position, by glTranslatef(20.0, 0.0,

0.0). See Figure 4.32. There is no animation even if you press space.
The ball’s intended latitudinal rotation is in and out of the circle C1 through the

middle of the torus. C1’s radius, called the outer radius of the torus, is 12.0, as specified
by the second parameter of glutWireTorus(2.0, 12.0, 20, 20). Moreover, C1 is
centered at the origin and lies on the xy-plane. Therefore, ignoring longitudinal
motion for now, the latitudinal rotation of the ball from its start position is about the32

i
i

i
i

i
i

i
i

line L through (12, 0, 0) parallel to the y-axis (L being tangent to C1). This rotation
will cause the ball’s center to travel along the circle C2 centered at (12, 0, 0), lying on
the xz-plane, of radius 8.

As glRotatef() always rotates about a radial axis, how does one obtain the
desired rotation about L, a non-radial line? Employ the Trick (see Example 4.3 if you
don’t remember). First, translate left so that L is aligned along the y-axis, then rotate
about the y-axis and, finally, reverse the first translation to bring L back to where it
was. This means uncommenting the corresponding three modeling transformations as
below:

// Begin revolving ball.

// glRotatef(longAngle, 0.0, 0.0, 1.0);

glTranslatef(12.0, 0.0, 0.0);

glRotatef(latAngle, 0.0, 1.0, 0.0);

glTranslatef(-12.0, 0.0, 0.0);

glTranslatef(20.0, 0.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 10, 10);

// End revolving ball.

Press space to view only latitudinal rotation.

Note: The two consecutive translation statements could be combined into one, but
then the code would be less easy to parse.

Finally, uncomment glRotatef(longAngle, 0.0, 0.0, 1.0) to implement lon-
gitudinal rotation about the z-axis. The angular speed of longitudinal rotation is set
to be five times slower than that of latitudinal rotation – the increments to longAngle

and latAngle in the animate() routine being 1◦ and 5◦, respectively. This means
the ball winds in and out of the torus five times before it completes one trip around.
End

Click for ballAndTorus.cpp modified Program Windows Project

Experiment 4.22. We want to add a satellite which tags along with the ball of
ballAndTorus.cpp. The following piece of code added to the end of the drawing
routine – just after // End revolving ball. – does the job:

glTranslatef(4.0, 0.0, 0.0);

glColor3f(1.0, 0.0, 0.0);

glutWireSphere(0.5, 5, 5);

See Figure 4.33 for a screenshot. For a revolving satellite add the following instead:

glRotatef(10*latAngle, 0.0, 1.0, 0.0);

glTranslatef(4.0, 0.0, 0.0);

glColor3f(1.0, 0.0, 0.0);

glutWireSphere(0.5, 5, 5);

Observe how Proposition 4.1 is being applied in both cases to determine the motion
of the satellite relative to the ball by means of transformation statements between the
two. End

Click for throwBall.cpp Program Windows Project 33

i
i

i
i

i
i

i
i

Chapter 4

Transformation,

Animation and

Viewing

Experiment 4.23. Run throwBall.cpp, which simulates the motion of a ball
thrown with a specified initial velocity subject to the force of gravity. Figure 4.34 is a
screenshot partway through the ball’s flight.

Press space to toggle between animation on and off. Press the right/left arrow keys
to increase/decrease the horizontal component of the initial velocity, up/down arrow
keys to likewise change the vertical component of the initial velocity and the page
up/down keys to change the gravitational acceleration. Press ‘r’ to reset. The values
of the initial velocity components and of gravitational acceleration are displayed on
the screen. End

Click for ballAndTorusWithFriction.cpp Program Windows Project

Experiment 4.24. Run ballAndTorusWithFriction.cpp, which modifies ball-

AndTorus.cpp to simulate an invisible viscous medium through which the ball travels.
Press space to apply force to the ball. It has to be kept pressed in order to continue

applying force. The ball comes to a gradual halt after the space bar is released.
Increase or decrease the level of applied force by using the up and down arrow keys.
Increase or decrease the viscosity of the medium using the page up and down keys.
Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to rotate the scene. Figure 4.36 is a screenshot. The
values of the applied force and viscous drag are shown at the top. End

Click for flag.cpp Program Windows Project

Experiment 4.25. Run flag.cpp, which simulates a flag fluttering in the wind.
Press space to start the animation, the up and down arrow keys to change its speed,
and ‘x/X’, ‘y/Y’ and ‘z/Z’ to rotate the viewpoint. Figure 4.37 is a screenshot. End

Click for clown3.cpp with parts corresponding to clown1.cpp and clown2.cpp

identified Program Windows Project

Experiment 4.26. We start with only a blue sphere for the head by running
clown1.cpp (see note next) which has the drawing routine below:

Note: clown1.cpp and clown2.cpp are not separate programs but incremental stages
of clown3.cpp which is in ExperimenterSource/Chapter4. Currently, clown3.cpp
is functionally actually clown1.cpp, drawing just a blue sphere because additions
corresponding to clown2.cpp and clown3.cpp are commented out. The program
indicates clearly the parts added by clown2.cpp and clown3.cpp, so uncomment
them to get those programs.

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

glutSwapBuffers();

}34

i
i

i
i

i
i

i
i

Figure 4.39(a) is a screenshot.
Next, we want a green conical hat. The command glutWireCone(base, height,

slices, stacks) draws a wireframe cone of base radius base and height height. The base
of the cone lies on the xy-plane with its axis along the z-axis and its apex pointing in
the positive direction of the z-axis. See Figure 4.40(a). The parameters slices and
stacks determine the fineness of the mesh (not shown in the figure).

Accordingly, insert the lines (as entire clown2.cpp is already in clown3.cpp, you
might want to simply uncomment the selected lines):

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 4.0, 20, 20);

in clown1.cpp after the call that draws the sphere, so that the drawing routine
becomes:

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 5.0, 20, 20);

glutSwapBuffers();

}

Not good! Because of the way glutWireCone() aligns, the hat covers the clown’s
face. This is easily fixed. Translate the hat 2 units up the z-axis and rotate it −90◦

about the x-axis to arrange it on top of the head. Finally, rotate it a rakish 30◦ about
the z-axis! Here’s the modified drawing routine of clown1.cpp at this point:

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

// Transformations of the hat.

glRotatef(30.0, 0.0, 0.0, 1.0);

glRotatef(-90.0, 1.0, 0.0, 0.0);

glTranslatef(0.0, 0.0, 2.0);

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 5.0, 20, 20);

35

i
i

i
i

i
i

i
i

Chapter 4

Transformation,

Animation and

Viewing

glutSwapBuffers();

}

Let’s add a brim to the hat by attaching a torus to its base. The command
glutWireTorus(inRadius, outRadius, sides, rings) draws a wireframe torus of inner
radius inRadius (the radius of a circular section of the torus), and outer radius
outRadius (the radius of the circle through the middle of the torus). The axis of the
torus is along the z-axis and centered at the origin. See Figure 4.40(b). Insert the call
glutWireTorus(0.2, 2.2, 10, 25) right after the call that draws the cone, so the
drawing routine becomes:

void drawScene(void)

{
glClear(GL COLOR BUFFER BIT);

glLoadIdentity();

// Place scene in frustum.

glTranslatef(0.0, 0.0, -9.0);

// Head.

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(2.0, 20, 20);

// Transformations of the hat and brim.

glRotatef(30.0, 0.0, 0.0, 1.0);

glRotatef(-90.0, 1.0, 0.0, 0.0);

glTranslatef(0.0, 0.0, 2.0);

// Hat.

glColor3f(0.0, 1.0, 0.0);

glutWireCone(2.0, 5.0, 20, 20);

// Brim.

glutWireTorus(0.2, 2.2, 10, 25);

glutSwapBuffers();

}

Observe that the brim is drawn suitably at the bottom of the hat and stays
there despite modeling transformations between head and hat – a consequence of
Proposition 4.1.

To animate, let’s spin the hat about the clown’s head by rotating it around
the y-axis. We rig the space bar to toggle between animation on and off and the
up/down arrow keys to change speed. All updates so far are included in clown2.cpp.
Figure 4.39(b) is a screenshot.

What’s a clown without little red ears that pop in and out?! Spheres will do for
ears. An easy way to bring about oscillatory motion is to make use of the function
sin(angle) which varies between −1 and 1. Begin by translating either ear a unit
distance from the head, and then repeatedly translate each a distance of sin(angle),
incrementing angle each time.

Note: A technicality one needs to be aware of in such applications is that angle is
measured in degrees in OpenGL syntax, e.g., in glRotatef(angle, p, q, r), while
the C++ math library assumes angles to be given in radians. Multiplying by π/180
converts degrees to radians.

The ears and head are physically separate, though. Let’s connect them with
springs! Helixes are springs. We borrow code from helix.cpp, but modify it to make
the length of the helix 1, its axis along the x-axis and its radius 0.25. As the ears
move, either helix is scaled along the x-axis so that it spans the gap between the head36

i
i

i
i

i
i

i
i

and an ear. The completed program is clown3.cpp, of which a screenshot is seen in
Figure 4.39(c). End

Click for floweringPlant.cpp Program Windows Project

Experiment 4.27. Run floweringPlant.cpp, an animation of a flower blooming.
Press space to start and stop animation, delete to reset, and ‘x/X’, ‘y/Y’ and ‘z/Z’ to
change the viewpoint. Figure 4.41 is a screenshot. End

Click for ballAndTorus.cpp modified Program Windows Project

Experiment 4.28. Run experimentSceneGraph.cpp. A screenshot is Figure 4.43.
The code is created from the scene graph in Figure 4.42(b). It is similar to
experimentAddSatellite.cpp, except now we have to handle graph nodes with
multiple children. The way to do this is simple: if a node has more than one
child then enclose the code corresponding to each of its subtrees in a push-pop pair.
We’ll leave the reader to check that this principle has been correctly applied in
experimentSceneGraph.cpp. End

Click for box.cpp Program Windows Project

Experiment 4.29. Replace the translation command

glTranslatef(0.0, 0.0, -15.0)

of box.cpp with the viewing command

gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0)

There is no change in what is viewed (Figure 4.47). In fact, the commands
glTranslatef(0.0, 0.0, -15.0) and gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0,

0.0, 0.0, 1.0, 0.0) are exactly equivalent . End

Click for boxWithLookAt.cpp Program Windows Project

Experiment 4.30. Continue the previous experiment, or run boxWithLookAt.cpp,
successively changing only the parameters centerx , centery , centerz – the middle three
– of the gluLookAt() call to the following:

1. 0.0, 0.0, 10.0

2. 0.0, 0.0,−10.0

3. 0.0, 0.0, 20.0

4. 0.0, 0.0, 15.0 End

Click for boxWithLookAt.cpp modified Program Windows Project

Experiment 4.31. Restore the original boxWithLookAt.cpp program with its
gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0) call and, again,
first replace the box with a glutWireTeapot(5.0). Run: a screenshot is shown
in Figure 4.50(a). Next, successively change the parameters upx , upy , upz – the last
three parameters of gluLookAt() – to the following: 37

i
i

i
i

i
i

i
i

Chapter 4

Transformation,

Animation and

Viewing

1. 1.0, 0.0, 0.0 (Figure 4.50(b))

2. 0.0,−1.0, 0.0 (Figure 4.50(c))

3. 1.0, 1.0, 0.0 (Figure 4.50(d))

Screenshots of the successive cases are shown in Figures 4.50(b)-(d). The camera
appears to rotate about its line of sight, the z-axis, so that its up direction points
along the up vector (upx , upy , upz) each time. End

Click for boxWithLookAt.cpp Program Windows Project

Experiment 4.32. Replace the wire cube of boxWithLookAt.cpp with a glutWire-

Teapot(5.0) and replace its gluLookAt() call instead with:

gluLookAt(0.0, 0.0, 15.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0)

The vector los = (0.0, 0.0, 0.0) − (0.0, 0.0, 15.0) = (0.0, 0.0,−15.0), which is down
the z-axis. The component of up = (1.0, 1.0, 1.0), perpendicular to the z-axis, is
(1.0, 1.0, 0.0), which, therefore, is the up direction. Is what you see the same as
Figure 4.50(d), which, in fact, is a screenshot for gluLookAt(0.0, 0.0, 15.0, 0.0,

0.0, 0.0, 1.0, 1.0, 0.0)? End

Click for box.cpp modified Program Windows Project

Experiment 4.33. Replace the one modeling transformation statement of box.cpp
with the block:

gluLookAt(0.0, 0.0, 15.0, 15.0, 0.0, 0.0, 0.0, 1.0, 0.0);

// glRotatef(45.0, 0.0, 1.0, 0.0);

// glTranslatef(0.0, 0.0, -15.0);

Run. Next, both comment out the viewing transformation and uncomment the
two modeling transformations following it. Run again. The displayed output, shown
in Figure 4.60, is the same in both cases. The reason, as Figures 4.61(a)-(c) explain,
is that the viewing transformation is equivalent to the modeling transformation block.
In particular, the former is undone by the latter. End

Click for spaceTravel.cpp Program Windows Project

Experiment 4.34. Run spaceTravel.cpp. The left viewport shows a global view
from a fixed camera of a conical spacecraft and 48 stationary spherical asteroids
arranged in a 6×8 grid. The right viewport shows the view from a front-facing camera
attached to the tip of the craft.

Press the up and down arrow keys to move the craft forward and backward and the
left and right arrow keys to turn it. Approximate collision detection is implemented
to prevent the craft from crashing into an asteroid. See Figure 4.64 for a screenshot
after the spacecraft has traveled and turned a bit. The frame rate of the program is
shown in the debug window.

The asteroid grid can be changed in size by redefining ROWS and COLUMNS. The
probability that a particular row-column slot is filled is specified as a percentage
by FILL PROBABILITY – a value less than 100 leads to a non-uniform distribution of
asteroids. End

Click for spaceTravel.cpp Program Windows Project38

i
i

i
i

i
i

i
i

Experiment 4.35. Run spaceTravel.cpp after increasing both ROWS and COLUMNS

to 100. The spacecraft now begins to respond so slowly to key input that its movement
seems clunky, unless, of course, you have a very powerful machine (in which case,
increase the values of ROWS and COLUMNS even more).

In fact, on our fairly fast desktop, there was almost no lag in response to key
presses with the original 6× 8 grid of asteroids – for example, we got a steady frame
rate of 25 fps by keeping the up arrow key pressed, sending the craft straight ahead.
However, we could never exceed 3 fps through the 100× 100 grid. End

Click for animateMan1.cpp Program Windows Project

Experiment 4.36. Run animateMan1.cpp. This is a fairly complex program to
develop a sequence of key frames for a man-like figure, which can subsequently be
animated. In addition to its spherical head, the figure consists of nine box-like body
parts which can rotate about their joints. Figure 4.67 shows the opening screen. All
parts are wireframe. End

Click for animateMan2.cpp Program Windows Project

Experiment 4.37. Run animateMan2.cpp. This is simply a pared-down version
of animateMan1.cpp, whose purpose is to animate the sequence of configurations
listed in the file animateManDataIn.txt, likely generated from the develop mode
of animateMan1.cpp. Press ‘a’ to toggle between animation on/off. As in
animateMan1.cpp, pressing the up or down arrow key speeds up or slows down
the animation. The camera functionalities via the keys ‘r/R’ and ‘z/Z’ remain as well.
Think of animateMan1.cpp as the studio and animateMan2.cpp as a movie theater.

The current contents of animateManDataIn.txt cause the man to do a handspring
over the ball. Figure 4.69 is a screenshot. End

Click for ballAndTorusLitOrthoShadowed.cpp Program Windows Project

Experiment 4.38. Run ballAndTorusLitOrthoShadowed.cpp of Chapter 11. This
program, obviously based on ballAndTorus.cpp, has lighting, as well as shadows
drawn on a checkered floor. Press space to start the ball traveling around the torus
and the up and down arrow keys to change its speed. Figure 4.70 is a screenshot.
End

Click for selection.cpp Program Windows Project

Experiment 4.39. Run selection.cpp, which is inspired by a similar program in
the red book. It uses selection mode to determine the identity of rectangles, drawn
with calls to drawRectangle(), which intersect the viewing volume created by the
projection statement glOrtho (-5.0, 5.0, -5.0, 5.0, -5.0, 5.0), this being a
10× 10× 10 axis-aligned box centered at the origin. Figure 4.72 is a screenshot. Hit
records are output to the command window. In the discussion that follows, we parse
the program carefully. End

Click for picking.cpp Program Windows Project

Experiment 4.40. Run picking.cpp which initially shows three variegated triangles,
the vertical one being farthest, the angled one second farthest and the horizontal 39

i
i

i
i

i
i

i
i

Chapter 4

Transformation,

Animation and

Viewing

one closest, this being clear in the overlaps. Left clicking picks a triangle and the
picked triangle turns yellow. See Figure 4.75 for a screenshot. Clicking the white area
unpicks a triangle, if one has already been picked, and picks nothing else. End

40

i
i

i
i

i
i

i
i

CHAPTER 5
Inside Animation: The Theory of
Transformations

Click for box.cpp modified Program Windows Project

Experiment 5.1. Fire up box.cpp and insert a rotation command – in fact, the
same one as in the previous exercise – just before the box definition so that the
transformation and object definition part of the drawing routine becomes:

// Modeling transformations.

glTranslatef(0.0, 0.0, -15.0);

glRotatef(90.0, 0.0, 1.0, 1.0);

glutWireCube(5.0); // Box.

The rotation command asks to rotate 90◦ about the line l from the origin through
(0, 1, 1). See Figure 5.23(a) for the displayed output.

Let’s try now, instead, to use the strategy suggested above to express the given
rotation in terms of rotations about the coordinate axes. Figure 5.23(b) illustrates
the following simple scheme. One can align l along the z-axis by rotating it 45◦ about
the x-axis. Therefore, the given rotation should be equivalent to (1) a rotation of 45◦

about the x-axis, followed by (2) a rotation of 90◦ about the z-axis, and followed,
finally, by (3) a rotation of −45◦ about the x-axis.

Give it a whirl. Replace the single rotation command glRotatef(90.0, 0.0,

1.0, 1.0) with a block of three as follows:

glRotatef(-45.0, 1.0, 0.0, 0.0);

glRotatef(90.0, 0.0, 0.0, 1.0);

glRotatef(45.0, 1.0, 0.0, 0.0);

Seeing is believing, is it not?! End

Click for manipulateModelviewMatrix.cpp Program Windows Project

Experiment 5.2. Run manipulateModelviewMatrix.cpp. Figure 5.30 is a
screenshot, although we are now really more interested in the transformations in
the program rather than its visual output.

The displayModelviewMatrix() routine outputs the current modelview matrix
to the C++ window in conventional rectangular form. It is invoked four times in
drawScene(), first right after the glLoadIdentity() command, and then successively
after the gluLookAt(), glMultMatrixf() and glScalef() calls. We’ll see next if the
four output values match our understanding of theory. End 41

i
i

i
i

i
i

i
i

Chapter 5

Inside Animation:

The Theory of

Transformations

Click for shear.cpp Program Windows Project

Experiment 5.3. Run shear.cpp which multiplies the transformation matrix of
Example 5.14 into the current modelview matrix to shear a box impacted by a ball.
Press the left and right arrow keys to move the ball. Figure 5.31 is a screenshot. Note
that because of OpenGL’s column-major storage of 2D arrays matrixdata[4] is the
location of tanα of the transformation matrix. End

42

i
i

i
i

i
i

i
i

CHAPTER 6
Advanced Animation Techniques

Click for spaceTravel.cpp Program Windows Project

Experiment 6.1. First, run the program spaceTravel.cpp of Chapter 4 with its
current values of ROWS and COLUMNS, determining the size of the asteroid grid, as 8
and 6, respectively. Move the spacecraft with the arrow keys.

Next, increase both ROWS and COLUMNS to 100. Figure 6.1 is a screenshot. The
spacecraft now begins to respond sluggishly to the arrow keys, at least on a typical
desktop. You may have to pump up even more the values of ROWS and COLUMNS if
yours is exceptionally fast. End

Click for spaceTravelFrustumCulled.cpp Program Windows Project

Experiment 6.2. Run spaceTravelFrustumCulled.cpp, which enhances space-
Travel.cpp with optional quadtree-based frustum culling. Pressing space toggles
between frustum culling enabled and disabled. As before, the arrow keys maneuver
the craft.

The current size of the asteroid field is 100× 100. Move the craft around toggling
between frustum culling off and on. Dramatic, isn’t it, the speed-up from frustum
culling?!

Note: When the number of asteroids is large, the display may take a while to come
up because of pre-processing to build the quadtree structure.

End

Click for occlusion.cpp Program Windows Project

Experiment 6.3. Run occlusion.cpp, which initially shows only a green rectangle.
Use the arrow keys to move a solid red cube into view from behind the rectangle.
Press the space bar, which is a toggle, to reveal a blue wire sphere contained in the
box. See Figure 6.7. The sphere plays the role of a complex “occludee”, while the
cube is its simple bounding box, and the rectangle is the “occluder”.

We’ll analyze this program next. End

Click for occlusionConditionalRendering.cpp Program Windows Project

Experiment 6.4. Run occlusionConditionalRendering.cpp. The major change
from occlusion.cpp is in the following code block in the drawing routine, where the 43

i
i

i
i

i
i

i
i

Chapter 6

Advanced Animation

Techniques

rendering of the sphere is made conditional upon the outcome of the query with id
query. The parameter GL QUERY WAIT says to wait for the query to complete.

glBeginConditionalRender(query, GL_QUERY_WAIT);

glColor3f(0.0, 0.0, 1.0);

glutWireSphere(0.5, 16, 10);

glEndConditionalRender();

Programmed into the block above is what to render depending on the query outcome.
There is no need, therefore, for user-instigated determination of results, so the variables
result and resultAvailable are now gone. End

Click for spaceTravelFrustumCulledTimerQuery Program Windows Project

Experiment 6.5. Run spaceTravelFrustumCulledTimerQuery.cpp. The program
is simply spaceTravelFrustumCulled.cpp enhanced with timer queries to count the
total time per frame spent in drawing the asteroids in both left and right viewports.
This is output in milliseconds to the debug window. Figure 6.8 is a screengrab of the
latter where, despite the small size, the reader might still be able to make out the
transition from three-digit values to single digits and back to three, as we switch from
frustum culling off to on and then off again. Read on to see how timer queries have,
in fact, been incorporated into this program. End

Click for eulerAngles.cpp Program Windows Project

Experiment 6.6. Run eulerAngles.cpp, which shows an L, similar to the one in
Figure 6.10(a), whose orientation can be interactively changed.

The initial orientation (Figure 6.11) of the L is analogous to the default pose of
the OpenGL camera. Pressing ‘x/X’, ‘y/Y’ and ‘z/Z’ changes the L’s Euler angles
and delete resets. The Euler angle values are displayed on-screen. End

Click for interpolateEulerAngles.cpp Program Windows Project

Experiment 6.7. Run interpolateEulerAngles.cpp, which is based on euler-

Angles.cpp. It simultaneously interpolates between the tuples (0, 0, 0) and (0, 90, 0)
and between (0, 0, 0) and (−90, 90, 90). Press the left and right arrow keys to
step through the interpolations (delete resets). For the first interpolation (green
L) the successive tuples are (0, angle, 0) and for the second (red L) they are
(−angle, angle, angle), angle changing by 5 at each step in both, between 0 and
90.

The paths are different! The green L seems to follow the intuitively straighter
path by keeping its long leg always on the xz-plane as it rotates about the y-axis,
while the red L arcs below the xz-plane, as diagrammed in Figure 6.12. Figure 6.13 is
a screenshot of interpolateEulerAngles.cpp part way through the interpolation.
End

Click for eulerAngles.cpp Program Windows Project

Experiment 6.8. Run eulerAngles.cpp again.
Press ‘x’ and ‘X’ a few times each – the L turns longitudinally. Reset by pressing

delete. Press ‘y’ and ‘Y’ a few times each – the L turns latitudinally. Reset. Press ‘z’
and ‘Z’ a few times each – the L twists. There appear to be three physical degrees44

i
i

i
i

i
i

i
i

of freedom of the L derived from rotation about the three coordinate axes which we
might descriptively term, respectively, longitudinal, latitudinal and twisting.

Now, from the initial configuration of eulerAngles.cpp press ‘y’ till β = 90. Next,
press ‘z’ or ‘Z’ – the L twists. Then press ‘x’ or ‘X’ – the L still twists! End

Click for quaternionAnimation.cpp Program Windows Project

Experiment 6.9. Run quaternionAnimation.cpp, which applies the preceding
ideas to animate the orientation of our favorite rigid body, an L, with the help of
quaternions. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to change the orientation of the blue L,
whose current Euler angles are shown on the display. Its start orientation is the
initially stationary red L. See Figure 6.18 for a screenshot.

Pressing enter at any time begins an animation of the red L from its initial
disposition to the blue’s current orientation. Press the up and down arrow keys to
change the speed and delete to reset. End

45

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Part IV

Geometry for the Home Office

47

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 7
Convexity and Interpolation

Click for square.cpp modified Program Windows Project

Experiment 7.1. Replace the polygon declaration part of our old favorite
square.cpp with the following:

glBegin(GL TRIANGLES);

glColor3f(1.0, 0.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glColor3f(0.0, 1.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glColor3f(0.0, 0.0, 1.0);

glVertex3f(80.0, 80.0, 0.0);

glEnd();

Observe how OpenGL interpolates vertex color values throughout the triangle.
Figure 7.7 is a screenshot. We’ll check next if it’s doing this the way described
above. End

Click for interpolation.cpp Program Windows Project

Experiment 7.2. Run interpolation.cpp, which shows the interpolated colors of
a movable point inside a triangle with red, green and blue vertices. The triangle itself
is drawn white. See Figure 7.8 for a screenshot.

As the arrow keys are used to move the large point, the height of each of the three
vertical bars on the left indicates the weight of the respective triangle vertex on the
point’s location. The color of the large point itself is interpolated (by the program)
from those of the vertices. End

Click for convexHull.cpp Program Windows Project

Experiment 7.3. Run convexHull.cpp, which shows the convex hull of 8 points on
a plane. Use the space bar to select a point and the arrow keys to move it. Figure 7.14
is a screenshot.

Note: The program implements a very inefficient (but easily coded) algorithm to
compute the convex hull of a set F as the union of all triangles with vertices in F .
End

49

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 8
Triangulation

Click for invalidTriangulation.cpp Program Windows Project

Experiment 8.1. Run invalidTriangulation.cpp, which implements exactly the
invalid triangulation {ABC,DBC,DAE} of the rectangle in Figure 8.3(d). Colors
have been arbitrarily fixed for the five vertices A-E. Press space to interchange the
order that ABC and DBC appear in the code. Figure 8.4 shows the difference. End

Click for square.cpp modified Program Windows Project

Experiment 8.2. Replace the polygon declaration of square.cpp with:

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

Display it both filled and outlined using appropriate glPolygonMode calls. A non-
convex quadrilateral is drawn in either case (Figure 8.8(a)).

Next, keeping the same cycle of vertices as above, list them starting with
glVertex3f(80.0, 20.0, 0.0) instead:

glBegin(GL POLYGON);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(40.0, 40.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glEnd();

Make sure to display it both filled and outlined. When filled it’s a triangle, while
outlined it’s a non-convex quadrilateral identical to the one output earlier (see
Figure 8.8(b))! Because the cyclic order of the vertices is unchanged, shouldn’t
it be as in Figure 8.8(a) both filled and outlined? End

51

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 9
Orientation

Click for square.cpp Program Windows Project

Experiment 9.1. Replace the polygon declaration part of square.cpp of Chapter 2
with:

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

This simply adds the two glPolygonMode() statements to the original square.cpp.
In particular, they specify that front-facing polygons are to be drawn in outline and
back-facing ones filled. Now, the order of the vertices is (20.0, 20.0, 0.0), (80.0, 20.0,
0.0), (80.0, 80.0, 0.0), (20.0, 80.0, 0.0), which appears CCW from the viewing face.
Therefore, the square is drawn in outline (Figure 9.8).

Next, rotate the vertices cyclically so that the declaration becomes:

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glEnd();

As the vertex order remains equivalent to the previous one, the square is still outlined.
Reverse the vertex listing next:

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL POLYGON);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(20.0, 80.0, 0.0);

glEnd();

The square is drawn filled as the vertex order now appears CW from the front of the
viewing box (Figure 9.9). End 53

i
i

i
i

i
i

i
i

Chapter 9

Orientation

Click for square.cpp Program Windows Project

Experiment 9.2. Replace the polygon declaration part of square.cpp with:

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL TRIANGLES);

// CCW

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

//CCW

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

// CW

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

// CCW

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glEnd();

The specification is for front faces to be outlined and back faces filled, but, as the
four triangles are not consistently oriented, we see both outlined and filled triangles
(Figure 9.14(a)). End

Click for square.cpp Program Windows Project

Experiment 9.3. Continuing the previous experiment, next replace the polygon
declaration part of square.cpp with:

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

glBegin(GL TRIANGLE STRIP);

glVertex3f(20.0, 80.0, 0.0);

glVertex3f(20.0, 20.0, 0.0);

glVertex3f(50.0, 80.0, 0.0);

glVertex3f(50.0, 20.0, 0.0);

glVertex3f(80.0, 80.0, 0.0);

glVertex3f(80.0, 20.0, 0.0);

glEnd();

The resulting triangulation is the same as before, but, as it’s consistently oriented, we
see only outlined front faces (Figure 9.14(b)). End

Click for squareOfWalls.cpp Program Windows Project

Experiment 9.4. Run squareOfWalls.cpp, which shows four rectangular walls
enclosing a square space. The front faces (the outside of the walls) are filled, while
the back faces (the inside) are outlined. Figure 9.15(a) is a screenshot.

The triangle strip of squareOfWalls.cpp consists of eight triangles which are
consistently oriented, because triangles in a strip are always consistently oriented.
End54

i
i

i
i

i
i

i
i

Click for threeQuarterSphere.cpp Program Windows Project

Experiment 9.5. Run threeQuarterSphere.cpp, which adds one half of a
hemisphere to the bottom of the hemisphere of hemisphere.cpp. The two polygon
mode calls ask the front faces to be drawn filled and back ones outlined. Turn the
object about the axes by pressing ‘x’, ‘X’, ‘y’, ‘Y’, ‘z’ and ‘Z’.

Unfortunately, the ordering of the vertices is such that the outside of the hemisphere
appears filled, while that of the half-hemisphere outlined. Figure 9.15(b) is a screenshot.
Likely, this would not be intended in a real design application where one would,
typically, expect a consistent look throughout one side.

Such mixing up of orientation is not an uncommon error when assembling an object
out of multiple pieces. Fix the problem in the case of threeQuarterSphere.cpp in
four different ways:

(a) Replace the loop statement

for(i = 0; i <= p/2; i++)

of the half-hemisphere with

for(i = p/2; i >= 0; i--)

to reverse its orientation.

(b) Interchange the two glVertex3f() statements of the half-hemisphere, again
reversing its orientation.

(c) Place the additional polygon mode calls

glPolygonMode(GL FRONT, GL LINE);

glPolygonMode(GL BACK, GL FILL);

before the half-hemisphere so that its back faces are drawn filled.

(d) Call

glFrontFace(GL CCW)

before the hemisphere definition and

glFrontFace(GL CW)

before the half-hemisphere to change the front-face default to be CW-facing for
the latter.

Of the four, either (a) or (b) is to be preferred because they go to the source of
the problem and repair the object, rather than hide it with the help of state variables,
as do (c) and (d). End

Experiment 9.6. Make a Möbius band as follows.
Take a long and thin strip of paper and draw two equal rows of triangles on one

side to make a triangulation of the strip as in the bottom of Figure 9.16. Turn the
strip into a Möbius band by pasting the two end edges together after twisting one
180◦. The triangles you drew on the strip now make a triangulation of the Möbius
band.

Try next to orient the triangles by simply drawing a curved arrow in each, in a
manner such that the entire triangulation is consistently oriented. Were you able to?!

End 55

i
i

i
i

i
i

i
i

Chapter 9

Orientation

Click for sphereInBox1.cpp Program Windows Project

Experiment 9.7. Run sphereInBox1.cpp of Chapter 11, which draws a green ball
inside a red box. Press up or down arrow keys to open or close the box. Figure 9.18(a)
is a screenshot of the box partly open.

Ignore the statements to do with lighting and material properties for now. See the
statements before and following where the sphere is drawn with a glutSolidSphere().
Culling is enabled with a call to glEnable(GL CULL FACE) and disabled with
glDisable(GL CULL FACE). The command glCullFace(face) where face can be
GL FRONT, GL BACK or GL FRONT AND BACK – it is, in fact, GL BACK in the program
– is used to specify if front-facing or back-facing or all triangles are to be culled.
Therefore, back-facing triangles of the sphere, which evidently are all hidden behind
front-facing ones, are indeed culled.

Comment out the glDisable(GL CULL FACE) call and open the box. Oops! Some
sides of the box have disappeared as you can see in Figure 9.18(b). The reason, of
course, is that the state variable GL CULL FACE is set when the drawing routine is
called the first time so that all back-facing triangles, including those belonging to the
box, are eliminated on subsequent calls.

End

Click for sphereInBox1.cpp Program Windows Project

Experiment 9.8. Here’s a trick often used in 3D design environments like Maya
and Studio Max to open up a closed space. Suppose you’ve finished designing the
exterior of a house and now want to work inside it, e.g., to make interior walls and
fittings. A good way to do this is to remove only those exterior walls which obscure
your view of the interior and leave the rest; that the obscuring walls are either all
front-facing or all back-facing means a cull will do the trick. Let’s see this in action.

Insert the pair of statements

glEnable(GL CULL FACE);

glCullFace(GL FRONT);

in the drawing routine of sphereInBox1.cpp just before the first glDrawElements()
call. The top and front sides of the box are not drawn, leaving its interior visible.
Figure 9.18(c) is a screenshot. End

Click for squareOfWallsReflected.cpp Program Windows Project

Experiment 9.9. Run squareOfWallsReflected.cpp, which is squareOfWalls.cpp
with an additional block of code before the drawing of the wall, including a
glScalef(-1.0, 1.0, 1.0) call, to reflect the scene about the yz-plane:

if (isReflected)

{
. . .
glScalef(-1.0, 1.0, 1.0);

// glFrontFace(GL CW);

}
else

{
. . .
// glFrontFace(GL CCW);

}

// Draw walls as a single triangle strip.

glBegin(GL TRIANGLE STRIP);

...56

i
i

i
i

i
i

i
i

The original walls are as in Figure 9.19(a). Press space to reflect. Keeping in mind
that front faces are filled and back faces outlined, it seems that glScalef(-1.0, 1.0,

1.0) not only reflects, but turns the square of walls inside out as well, as you can see
in Figure 9.19(b). End

57

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Part V

Making Things Up

59

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 10
Modeling in 3D Space

Click for astroid.cpp Program Windows Project

Experiment 10.1. Run astroid.cpp which modifies circle.cpp to implement
instead the parametric equations

x = cos3 t, y = sin3 t, z = 0, 0 ≤ t ≤ 2π

for the astroid of Exercise 10.2. Figure 10.9 is a screenshot. End

Click for cylinder.cpp Program Windows Project

Experiment 10.2. Run cylinder.cpp, which shows a triangular mesh approxima-
tion of a circular cylinder, given by the parametric equations

x = f(u, v) = cosu, y = g(u, v) = sinu, z = h(u, v) = v,

for (u, v) ∈ [−π, π]× [−1, 1], i.e., of sectional radius 1 and length 2. Pressing arrow
keys changes the fineness of the mesh. Press ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the cylinder
itself. Figure 10.28 is a screenshot. End

Click for helicalPipe.cpp Program Windows Project

Experiment 10.3. Without really knowing what to expect (honestly!) we tweaked
the parametric equations of the cylinder to the following:

x = cosu+ sin v, y = sinu+ cos v, z = u, (u, v) ∈ [−π, π]× [−π, π]

It turns out the resulting shape looks like a helical pipe – run helicalPipe.cpp.
Figure 10.31 is a screenshot.

Functionality is the same as for cylinder.cpp: press the arrow keys to coarsen or
refine the triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the pipe.

Looking at the equations again, it wasn’t too hard to figure out how this particular
surface came into being. See the next exercise. End

Click for torus.cpp Program Windows Project 61

i
i

i
i

i
i

i
i

Chapter 10

Modeling in 3D

Space

Experiment 10.4. Run torus.cpp, which applies the parametric equations deduced
above within the template of cylinder.cpp (simply swapping the new f, g and h

function definitions into the latter program). The radii of the circular trajectory and
the profile circle are set to 2.0 and 0.5, respectively. Figure 10.35 is a screenshot.

Functionality is the same as for cylinder.cpp: press the arrow keys to coarsen or
refine the triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the torus. End

Click for torusSweep.cpp Program Windows Project

Experiment 10.5. Run torusSweep.cpp, modified from torus.cpp to show the
animation of a circle sweeping out a torus. Press space to toggle between animation
on and off. Figure 10.36 is a screenshot part way through the animation. End

Click for table.cpp Program Windows Project

Experiment 10.6. The preceding equations are implemented in table.cpp, again
using the template of cylinder.cpp. Press the arrow keys to coarsen or refine the
triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’ to turn the table. See Figure 10.39 for a
screenshot of the table.

Note that the artifacts at the edges of the table arise because sample points may not
map exactly to corners (0,−8), (4,−8), . . . , (0, 8) of the profile drawn in Figure 10.38(a)
– which can be avoided by including always t values 0, 4, 5, 8, 22, 31, 32 and 42 in the
sample grid. End

Click for doublyCurledCone.cpp Program Windows Project

Experiment 10.7. The plan above is implemented in doublyCurledCone.cpp, again
using the template of cylinder.cpp, with the value of A set to π/4 and a to 0.05.
Press the arrow keys to coarsen or refine the triangulation and ‘x/X’, ‘y/Y’ or ‘z/Z’
to turn the cone. Figure 10.41 is a screenshot. End

Click for extrudedHelix.cpp Program Windows Project

Experiment 10.8. Run extrudedHelix.cpp, which extrudes a helix, using yet
again the template of cylinder.cpp. The parametric equations of the extrusion are

x = 4cos(10πu), y = 4sin(10πu), z = 10πu+ 4v, 0 ≤ u, v ≤ 1

the constants being chosen to size the object suitably. As the equation for z indicates,
the base helix is extruded parallel to the z-axis. Figure 10.42 is a screenshot. End

Click for bilinearPatch.cpp Program Windows Project

Experiment 10.9. Run bilinearPatch.cpp, which implements precisely Equa-
tion (10.20). Press the arrow keys to refine or coarsen the wireframe and ‘x/X’, ‘y/Y’
or ‘z/Z’ to turn the patch. Figure 10.47 is a screenshot. End

Click for hyperboloid1sheet.cpp Program Windows Project62

i
i

i
i

i
i

i
i

Experiment 10.10. Run hyperboloid1sheet.cpp, which draws a triangular mesh
approximation of a single-sheeted hyperboloid with the help of the parametrization

x = cosu sec v, y = sinu sec v, z = tan v, u ∈ [−π, π], v ∈ (−π/2, π/2)

Figure 10.51(a) is a screenshot. In the implementation we restrict v to [−0.4π, 0.4π]
to avoid ±π/2 where sec is undefined. End

Click for gluQuadrics.cpp Program Windows Project

Experiment 10.11. Run gluQuadrics.cpp to see all four GLU quadrics. Press the
left and right arrow keys to cycle through the quadrics and ‘x/X’, ‘y,Y’ and ‘z/Z’ to
turn them. The images in Figure 10.52 were, in fact, generated by this program. End

Click for glutObjects.cpp Program Windows Project

Experiment 10.12. Run glutObjects.cpp, a program we originally saw in
Chapter 3. Press the left and right arrow keys to cycle through the various FreeGLUT
objects and ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn them. Among other objects you see all five
regular polyhedra, both in solid and wireframe. End

Click for tetrahedron.cpp Program Windows Project

Experiment 10.13. Run tetrahedron.cpp. The program draws a wireframe
tetrahedron of edge length 2

√
2 which can be turned using the ‘x/X’, ‘y/Y’ and ‘z/Z’

keys. Figure 10.56 is a screenshot. End

Click for bezierCurves.cpp Program Windows Project

Experiment 10.14. Run bezierCurves.cpp. Press the up and down arrow keys
to select an order between 2 and 6 on the first screen. Press enter to proceed to the
next screen where the control points initially lie on a straight line. Press space to
select a control point and then the arrow keys to move it. Press delete to start over.
Figure 10.65 is a screenshot for order 6. Obviously, the control points always lie on a
plane, keeping matters simple for now.

In addition to the black Bézier curve, drawn in light gray is its control polygon,
the polyline through successive control points. Note how the Bézier curve tries gently,
without hard corners, to track its control polygon’s shape. End

Click for bezierCurveWithEvalCoord.cpp Program Windows Project

Experiment 10.15. Run bezierCurveWithEvalCoord.cpp, which draws a fixed
Bézier curve of order 6. See Figure 10.66 for a screenshot. There is no interaction.
End

Click for bezierCurveWithEvalMesh.cpp Program Windows Project

Experiment 10.16. Run bezierCurveWithEvalMesh.cpp. This program is similar
to bezierCurveWithEvalCoord.cpp except that, instead of calls to glEvalCoord1f(),
the pair of statements 63

i
i

i
i

i
i

i
i

Chapter 10

Modeling in 3D

Space

glMapGrid1f(50, 0.0, 1.0);

glEvalMesh1(GL LINE, 0, 50);

are used to draw exactly the same approximating polyline.
The call glMapGrid1f(n, t1, t2) specifies an evenly-spaced grid of n+ 1 sample

points in the parameter interval, starting at t1 and ending at t2. So, the sample
points returned by glMapGrid1f(50, 0.0, 1.0) are 0.0, 0.02, 0.04, . . . , 1.0. The call
glEvalMesh1(mode, p1, p2) works in tandem with the glMapGrid1f(n, t1, t2)
call. For example, if mode is GL LINE, then it draws a line strip through the mapped
sample points, starting with the image of the p1th sample point and ending at the
image of the p2th one. End

Click for bezierCurveTangent.cpp Program Windows Project

Experiment 10.17. Run bezierCurveTangent.cpp. The blue curve may be shaped
by selecting a control point with the space key and moving it with the arrow keys.
Check that the two curves meet in a visually smooth way when their control polygons
meet smoothly. Figure 10.68 is a screenshot of such a configuration. End

Click for bezierSurface.cpp Program Windows Project

Experiment 10.18. Run bezierSurface.cpp, which allows the user herself to
shape a Bézier surface by selecting and moving control points originally in a 6 × 4
grid. Drawn in black actually is a 20 × 20 quad mesh approximation of the Bézier
surface. Also drawn in light gray is the control polyhedron, which is the polyhedral
surface with vertices at control points.

Press the space and tab keys to select a control point. Use the left/right arrow
keys to move the selected control point parallel to the x-axis, the up/down arrow keys
to move it parallel to the y-axis, and the page up/down keys to move it parallel to the
z-axis. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn the surface. Figure 10.69 is a screenshot.
End

Click for bezierCanoe.cpp Program Windows Project

Experiment 10.19. Run bezierCanoe.cpp. Repeatedly press the right arrow key
for a design process that starts with a rectangular Bézier patch, and then edits the
control points in each of three successive steps until a canoe is formed. The left arrow
reverses the process. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn the surface.

The initial configuration is a 6× 4 array of control points placed in a rectangular
grid on the xz-plane, making a rectangular Bézier patch.

The successive steps are:

(1) Lift the two end columns of control points up in the y-direction and bring them
in along the x-direction to fold the rectangle into a pocket.

(2) Push the middle control points of the end columns outwards along the x-direction
to plump the pocket into a “canoe” with front and back still open.

(3) Bring together the two halves of each of the two end rows of control points to
stitch closed the erstwhile open front and back. Figure 10.70 is a screenshot
after this step.

End

Click for torpedo.cpp Program Windows Project64

i
i

i
i

i
i

i
i

Experiment 10.20. Run torpedo.cpp, which shows a torpedo composed of a few
different pieces, including bicubic Bézier patch propeller blades:

(i) Body: GLU cylinder.

(ii) Nose: hemisphere.

(iii) Three fins: identical GLU partial discs.

(iv) Backside: GLU disc.

(v) Propeller stem: GLU cylinder.

(vi) Three propeller blades: identical bicubic Bézier patches (control points arranged
by trial-and-error).

Press space to start the propellers turning. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn
the torpedo. Figure 10.73 is a screenshot. End

Click for OBJmodels.cpp Program Windows Project

Experiment 10.21. Run OBJmodels.cpp to see a mesh hippopotamus sniffing the
rear of a mesh camel. Figure 10.76 is a screenshot.

The object-loading subroutine loadOBJ(), which we analyze below, does the main
job of transforming the polygons defined in an OBJ file into triangle fans that OpenGL
draws in OBJmodels.cpp. Keep in mind though that loadOBJ() is minimal in that
it reads only the physical coordinates of an object’s vertices together with the mesh
structure. It ignores additional vertex attributes such as texture coordinates and
normal values so the program as of now can neither display texture nor lighting.
Nevertheless, loadOBJ() is fairly robust and one should be able to use it to draw at
least the monochrome wireframe of any OBJ model. End

Click for fractals.cpp Program Windows Project

Experiment 10.22. Run fractals.cpp, which draws three different fractal curves –
a Koch snowflake, a variant of the Koch snowflake and a tree – all within the framework
above, by simply switching source-sequel specs. Press the left/right arrow keys to
cycle through the fractals and the up/down arrow keys to change the level of recursion.
Figure 10.82 shows all three at level 4. End

65

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Part VI

Lights, Camera, Equation

67

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 11
Color and Light

Click for sphereInBox1.cpp Program Windows Project

Experiment 11.1. Run sphereInBox1.cpp. Press the up-down arrow keys to open
or close the box. Figure 11.19 is a screenshot of the box partly open. We’ll use this
program as a running example to explain much of the OpenGL lighting and material
color syntax. End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.2. Run lightAndMaterial1.cpp.

The ball’s current ambient and diffuse reflectances are identically set to a
maximum blue of {0.0, 0.0, 1.0, 1.0}, its specular reflectance to the highest gray level
{1.0, 1.0, 1.0, 1.0} (i.e., white), shininess to 50.0 and emission to zero {0.0, 0.0, 0.0, 1.0}.

Press ‘a/A’ to decrease/increase the ball’s blue Ambient reflectance and ‘d/D’ to
change likewise its Diffuse reflectance. Pressing ‘s/S’ decreases/increases the gray level
of its Specular reflectance. Pressing ‘h/H’ decreases/increases its sHininess, while
pressing ‘e/E’ decreases/increases the blue component of the ball’s Emission. The
page up and down keys move the ball while ‘r’ returns it to its original position. End

Click for lightAndMaterial2.cpp Program Windows Project

Experiment 11.3. Run lightAndMaterial2.cpp.

The white light’s current diffuse and specular are identically set to a maximum
of {1.0, 1.0, 1.0, 1.0} and it gives off zero ambient light. The green light’s attributes
are fixed at a maximum diffuse and specular of {0.0, 1.0, 0.0, 1.0}, again with zero
ambient. The global ambient currently is a low intensity gray at {0.2, 0.2, 0.2, 1.0}.

Press ‘w’ to toggle the White light off and on and ‘g’ to toggle likewise the Green
light. Press ‘d/D’ to decrease/increase the gray level of the white light’s Diffuse and
specular intensity (the ambient intensity never changes from zero). Pressing ‘m/M’
decreases/increases the gray intensity of the global aMbient. Move the ball with the
page up and down keys. Rotate the white light about the ball’s original position by
pressing the arrow keys (it does not follow the ball if the latter is moved).

The program has added functionality which we’ll need later. End

Click for lightAndMaterial1.cpp Program Windows Project 69

i
i

i
i

i
i

i
i

Chapter 11

Color and Light

Experiment 11.4. Run lightAndMaterial1.cpp.
Reduce the specular reflectance of the ball. Both the white and green highlights

begin to disappear, as it’s the specular components of the reflected lights which appear
as specular highlights (or, glint). See Figure 11.21. End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.5. Restore the original values of lightAndMaterial1.cpp.
Reduce the diffuse reflectance gradually to zero. The ball starts to lose its roundness

and brightness until it looks like a flat glassy disc. The reason for this is that ambient
intensity, which does not depend on eye or light direction, is uniform across vertices
of the ball and cannot, therefore, provide the perception of depth that obtains from a
contrast in color values across the surface. Diffuse light, on the other hand, which
varies in intensity across the surface depending on how the normal turns, cues the
viewer to depth or “3Dness”.

Even though there is a specular highlight, sensitive to both eye and light direction,
it’s too localized to provide much depth contrast. Reducing the shininess does spread
the highlight but the effect is not a realistic perception of depth.

Figure 11.24 shows the ball starting with only ambient reflectance, then successively
adding in diffuse and specular. End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.6. Restore the original values of lightAndMaterial1.cpp.
Now reduce the ambient reflectance gradually to zero. The ball seems to shrink!

See Figure 11.25. This is because the vertex normals rotate away from the light
direction (and viewer) near the visible edges of the ball, scaling down the diffuse
reflectance there (recall the cos θ term in the diffusive reflectance equation (11.7)).
The result, with no ambient light to offset the reduction in diffuse, is that the ends of
the ball are dark. End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.7. Restore the original values of lightAndMaterial1.cpp.
Reduce both the ambient and diffuse reflectances to nearly zero. See Figure 11.26.

It’s like the cat disappearing, leaving only its grin! End

Click for lightAndMaterial1.cpp Program Windows Project

Experiment 11.8. Run lightAndMaterial1.cpp with its original values.
With its current high ambient, diffuse and specular reflectances the ball looks a

shiny plastic (Figure 11.28(a)). Reducing the ambient, diffuse and specular reflectances
somewhat makes for a heavier and less plastic appearance (Figure 11.28(b)). Restoring
the ambient and diffuse to higher values, but reducing the specular reflectance makes
it a less shiny plastic (Figure 11.28(c)). Low values for all three of ambient, diffuse and
specular reflectances give the ball a somewhat wooden appearance (Figure 11.28(d)).

But, of course, the eyes of the beholder have a final say, which means that color
and light are art as much as science. End

Click for lightAndMaterial2.cpp Program Windows Project70

i
i

i
i

i
i

i
i

Experiment 11.9. Run lightAndMaterial2.cpp.
Reduce the white light’s diffuse and specular intensity to nearly 0. The ball

becomes a flat dull blue disc with only the green highlight prominent (Figure 11.29).
This is because the ball’s diffuse (and ambient) is blue and cannot reflect the green
light’s diffuse component, causing the ball thereby to lose almost all diffuse light and,
consequently, 3-dimensionality.

Raising the white global ambient brightens the ball, but it still looks flat in the
absence of diffusive light. End

Click for spotlight.cpp Program Windows Project

Experiment 11.10. Run spotlight.cpp. The program is primarily to demonstrate
spotlighting, the topic of a forthcoming section. Nevertheless, press the page-up key
to see a multi-colored array of spheres. Figure 11.32 is a screenshot.

Currently, the point of interest in the program is the invocation of the color
material mode for the front-face ambient and diffuse reflectances by means of the last
two statements in the initialization routine, viz.,

glEnable(GL COLOR MATERIAL);

glColorMaterial(GL FRONT, GL AMBIENT AND DIFFUSE);

and subsequent coloring of the spheres in the drawing routine by glColor4f()

statements. End

Click for lightAndMaterial2.cpp Program Windows Project

Experiment 11.11. Run lightAndMaterial2.cpp. Press ‘l’ or ‘L’ to toggle between
the Local and the infinite viewpoint in lightAndMaterial2.cpp. See Figures 11.34
and 11.35 for screenshots. End

Click for litTriangle.cpp Program Windows Project

Experiment 11.12. Run litTriangle.cpp, which draws a single triangle, whose
front face is coded to be red and back blue, initially front-facing and lit two-sided.
Press the left and right arrow keys to turn the triangle and space to toggle two-sided
lighting on and off. See Figures 11.36 and 11.37 for screenshots.

Notice how the back face is dark when two-sided lighting is disabled – this is
because the normals are pointing opposite of the way they should be. End

Click for lightAndMaterial2.cpp Program Windows Project

Experiment 11.13. Press ‘p’ or ‘P’ to toggle between Positional and directional
white light in lightAndMaterial2.cpp. The white wire sphere indicates the positional
light, while the white arrow the incoming directional light. See Figures 11.39 and
11.40. Keep in mind that you can both move the ball and rotate the light position.
End

Click for lightAndMaterial2.cpp Program Windows Project

Experiment 11.14. Run lightAndMaterial2.cpp. The current values of the
constant, linear and quadratic attenuation parameters are 1, 0 and 0, respectively, so 71

i
i

i
i

i
i

i
i

Chapter 11

Color and Light

there’s no attenuation. Press ‘t/T’ to decrease/increase the quadratic aTtenuation
parameter. Linear attenuation is always zero.

Move the ball by pressing the page up/down keys to observe the effect of attenuation.
Figure 11.41 shows the ball some ways off with no attenuation and then with some
amount of attenuation in the case of both a positional and a directional light. End

Click for spotlight.cpp Program Windows Project

Experiment 11.15. Run spotlight.cpp, which shows a bright white spotlight
illuminating a multi-colored array of spheres. Figure 11.43 is a screenshot.

Press the page up/down arrows to increase/decrease the angle of the light cone.
Press the arrow keys to move the spotlight. Press ‘t/T’ to change the spotlight
attenuation exponent (to be explained soon). A white wire mesh is drawn separately
along the light cone boundary. End

Click for spotlight.cpp Program Windows Project

Experiment 11.16. Run again spotlight.cpp. Observe the darkening of the balls
near the cone boundary as the attenuation exponent is increased by pressing ‘T’.
Figure 11.44 is a screenshot with the attenuation exponent equal to 10.0. Compare
this with the Figure 11.43 where the exponent was 2.0. End

Click for checkeredFloor.cpp Program Windows Project

Experiment 11.17. Run checkeredFloor.cpp, which creates a checkered floor
drawn as an array of flat shaded triangle strips. See Figure 11.45. Flat shading causes
each triangle in a strip to be painted with the color of the last of its three vertices,
according to the order of the strip’s vertex list.

End

Click for sphereInBox1.cpp Program Windows Project

Experiment 11.18. Run again sphereInBox1.cpp. The normal vector values at
the eight box vertices of sphereInBox1.cpp, placed in the array normals[], are

[±1/
√
3 ± 1/

√
3 ± 1/

√
3]T

each corresponding to one of the eight possible combinations of signs. End

Click for sphereInBox2.cpp Program Windows Project

Experiment 11.19. Run sphereInBox2.cpp, which modifies sphereInBox1.cpp.
Press the arrow keys to open or close the box and space to toggle between two methods
of drawing normals.

The first method is the same as that of sphereInBox1.cpp, specifying the normal
at each vertex as an average of incident face normals. The second creates the box
by first drawing one side as a square with the normal at each of its four vertices
identically specified to be the unit vector perpendicular to that square, then placing
that square in a display list and, finally, drawing it six times appropriately rotated.
Figure 11.53(b) shows the vertex normals to the three incident faces at each vertex.
Figure 11.54 shows screenshots of the box created with and without averaged normals.

End72

i
i

i
i

i
i

i
i

Click for litCylinder.cpp Program Windows Project

Experiment 11.20. Run litCylinder.cpp, which builds upon cylinder.cpp using
the normal data calculated above, together with color and a single directional light
source. Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn the cylinder. The functionality of being
able to change the fineness of the mesh approximation has been dropped. Figure 11.58
is a screenshot. End

Click for litDoublyCurledCone.cpp Program Windows Project

Experiment 11.21. The program litDoublyCurledCone.cpp, in fact, applies the
preceding equations for the normal and its length. Press ‘x/X’, ‘y/Y’, ‘z/Z’ to turn
the cone. See Figure 11.60 for a screenshot.

As promised, litDoublyCurledCone.cpp is pretty much a copy of litCylinder.-
cpp, except for the new f(), g(), h(), fn(), gn() and hn() functions, as also the
new normn() to compute the normal’s length.

End

Click for litCylinderProgrammedNormals.cpp Program Windows Project

Experiment 11.22. Run litCylinderProgrammedNormals.cpp. Press ‘x/X’, ‘y/Y’,
‘z/Z’ to turn the cylinder. Figure 11.61 is a screenshot. End

Click for ballAndTorusLitOrthoShadowed.cpp Program Windows Project

Experiment 11.23. Run ballAndTorusLitOrthoShadowed.cpp. Press space to
start the ball traveling around the torus and the up and down arrow keys to change
its speed. Figure 11.64 is a screenshot.

The only user-provided normal in the program is the unit vector in the +y-direction
for the checkered floor; normals are automatic for the ball and torus, FreeGLUT objects
both. The shadows are the result of simple degenerate scaling calls, as discussed in
Section 4.7.2. End

Click for litBezierCanoe.cpp Program Windows Project

Experiment 11.24. Run litBezierCanoe.cpp. Press ‘x/X’, ‘y/Y’, ‘z/Z’ to turn
the canoe. You can see a screenshot in Figure 11.65.

This program illuminates the final shape of bezierCanoe.cpp of Experiment 10.19
with a single directional light source. Other than the expected command glEnable(GL -

AUTO NORMAL) in the initialization routine, an important point to notice about
litBezierCanoe.cpp is the reversal of the sample grid along the u-direction. In
particular, compare the statement

glMapGrid2f(20, 1.0, 0.0, 20, 0.0, 1.0)

of litBezierCanoe.cpp with

glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0)

of bezierCanoe.cpp. This change reverses the directions of one of the tangent vectors
evaluated at each vertex by OpenGL and, consequently, that of the normal (which is
the cross-product of the two tangent vectors).

Modify litBezierCanoe.cpp by changing 73

i
i

i
i

i
i

i
i

Chapter 11

Color and Light

glMapGrid2f(20, 1.0, 0.0, 20, 0.0, 1.0);

back to bezierCanoe.cpp’s

glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);

Wrong normal directions! The change from bezierCanoe.cpp is necessary. Another
solution would be to leave glMapGrid2f() as it is in bezierCanoe.cpp, instead making
a call to glFrontFace(GL CW). End

Click for shipMovie.cpp Program Windows Project

Experiment 11.25. Run shipMovie.cpp. Pressing space starts an animation
sequence which begins with a torpedo traveling toward a moving ship and ends on
its own after a few seconds. Press space again at any time to stop the animation.
Figure 11.66 is a screenshot as the torpedo nears the ship. End

Click for sizeNormal.cpp Program Windows Project

Experiment 11.26. Run sizeNormal.cpp based on litTriangle.cpp.
The ambient and diffuse colors of the three triangle vertices are set to red, green

and blue, respectively. The normals are specified separately as well, initially each of
unit length perpendicular to the plane of the triangle.

However, pressing the up/down arrow keys changes (as you can see) the size, but
not the direction, of the normal at the red vertex. Observe the corresponding change
in color of the triangle. Figure 11.68 is a screenshot.

End

Click for sizeNormal.cpp modified Program Windows Project

Experiment 11.27. Run sizeNormal.cpp after placing the statement glEnable(GL -

NORMALIZE) at the end of the initialization routine. Press the up/down arrow keys.
The triangle no longer changes color (though the white arrow still changes in length,
of course, because its size is that of the program-specified normal). End

74

i
i

i
i

i
i

i
i

CHAPTER 12
Texture

Click for texturedSquare.cpp Program Windows Project

Experiment 12.1. Run texturedSquare.cpp, which loads an external image of a
shuttle launch as one texture and generates internally a chessboard image as another.

The program paints both the external and the procedural texture onto a square
polygon. Figure 12.5 shows the two. Press space to toggle between them, the left and
right arrow keys to turn the square and delete to reset.

As one rotates the square one sees the texture image front-facing on the front of
the square, while the image is seen from behind on its backside. End

Click for texturedSquare.cpp Program Windows Project

Experiment 12.2. Replace every 1.0 in each glTexCoord2f() command of
texturedSquare.cpp with 0.5 so that the polygon specification is:

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(0.5, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(0.5, 0.5); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(0.0, 0.5); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

The lower left quarter of the texture is interpolated over the square (see Figure 12.9
for a screenshot and Figure 12.13(a) for the texture map). Make sure to see both the
launch and chessboard textures! End

Click for texturedSquare.cpp Program Windows Project

Experiment 12.3. Restore the original texturedSquare.cpp and delete the last
vertex from the polygon so that the specification is that of a triangle:

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(10.0, 10.0, 0.0);

glEnd();

Exactly as expected, the lower-right triangular half of the texture is interpolated over
the world-space triangle (Figure 12.10 and Figure 12.13(b)).

Change the coordinates of the last vertex of the world-space triangle to
(0.0, 10.0, 0.0): 75

i
i

i
i

i
i

i
i

Chapter 12

Texture

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(0.0, 10.0, 0.0);

glEnd();

Interpolation is clearly evident now. Parts of both launch and chessboard are skewed
by texturing, as the triangle specified by texture coordinates (still the lower-right half)
is not similar to its world-space counterpart (Figure 12.11 and Figure 12.13(c)).

Continuing, change the texture coordinates of the last vertex of the triangle to
(0.5, 1.0):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(0.5, 1.0); glVertex3f(0.0, 10.0, 0.0);

glEnd();

The textures are no longer skewed as the triangle in texture space is similar to the
one being textured (Figure 12.12 and Figure 12.13(d)). End

Click for texturedSquare.cpp Program Windows Project

Experiment 12.4. Restore the original texturedSquare.cpp and replace launch.bmp
with cray2.bmp, an image of a Cray 2 supercomputer.

View the texture images in the Textures folder and note their sizes: the launch is
512 × 512 pixels while the Cray 2 is 512 × 256. As you can see, the Cray 2 (original
texture is Figure 12.14) is now scaled by half width-wise to fit the square polygon
(screenshot is Figure 12.15). End

Click for texturedSquare.cpp Program Windows Project

Experiment 12.5. Restore the original texturedSquare.cpp and then change
the coordinates of only the third world-space vertex of the textured polygon to
(20.0, 0.0, 0.0):

glBegin(GL POLYGON);

glTexCoord2f(0.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(1.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(1.0, 1.0); glVertex3f(20.0, 0.0, 0.0);

glTexCoord2f(0.0, 1.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

The launch looks odd. The rocket rises vertically, but the flames underneath are
shooting sideways! Toggle to the chessboard and it’s instantly clear what’s happening.
Figure 12.16 shows both textures. End

Click for texturedSquare.cpp Program Windows Project

Experiment 12.6. Restore the original texturedSquare.cpp and change the texture
coordinates of the polygon as follows:

glBegin(GL POLYGON);

glTexCoord2f(-1.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(2.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(2.0, 2.0); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(-1.0, 2.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();76

i
i

i
i

i
i

i
i

It seems that the texture space is tiled with the texture. See Figure 12.18.
In particular, the texture seems repeated in every unit square of texture space

with integer vertex coordinates. As the world-space polygon is mapped to a 3 × 2
rectangle in texture space, it is painted with six copies of the texture, each scaled to
an aspect ratio of 2:3. The scheme itself is indicated Figure 12.19. End

Click for texturedSquare.cpp Program Windows Project

Experiment 12.7. Change again the texture coordinates of texturedSquare.cpp
by replacing each −1.0 with −0.5:

glBegin(GL POLYGON);

glTexCoord2f(-0.5, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(2.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(2.0, 2.0); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(-0.5, 2.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

Again it’s apparent that the texture space is tiled with the specified texture and that
the world-space polygon is painted over with its rectangular image in texture space.
See Figure 12.20. End

Click for texturedSquare.cpp Program Windows Project

Experiment 12.8. Restore the original texturedSquare.cpp and then change the
texture coordinates as below, which is the same as in Experiment 12.6:

glBegin(GL POLYGON);

glTexCoord2f(-1.0, 0.0); glVertex3f(-10.0, -10.0, 0.0);

glTexCoord2f(2.0, 0.0); glVertex3f(10.0, -10.0, 0.0);

glTexCoord2f(2.0, 2.0); glVertex3f(10.0, 10.0, 0.0);

glTexCoord2f(-1.0, 2.0); glVertex3f(-10.0, 10.0, 0.0);

glEnd();

Next, replace the GL REPEAT parameter in the

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL REPEAT);

statement of both the loadlTextures() and loadChessboardTexture() routines
with GL CLAMP TO EDGE so that the statement becomes

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S, GL CLAMP TO EDGE);

Figure 12.1: Screenshot
from Experiment 12.8.

This causes the wrapping mode to be clamped to the edge in the s-direction. It’s
probably easiest to understand what happens in this mode by observing, in particular,
the chessboard texture. See Figure 12.21: points of the square with texture coordinate
s-value is greater than 1 (i.e., points in the right one-third of the square) each get
their color values from the point on the right edge of the texture with the same t-value.
In other words, the right edge of the texture, where s = 1, is repeated along every
column of the square whose texture s is greater than 1. Likewise, the left edge of the
texture, where s = 0, is repeated along every column of the square whose texture s is
less than 1. End

Click for texturedSquare.cpp Program Windows Project

Experiment 12.9. Continue the previous experiment by clamping to the edge the
texture along the t-direction as well. In particular, replace the GL REPEAT parameter
in the 77

i
i

i
i

i
i

i
i

Chapter 12

Texture

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT);

statements with GL CLAMP TO EDGE. We leave the reader to parse the output
(Figure 12.22). End

Click for fieldAndSky.cpp Program Windows Project

Experiment 12.10. Run fieldAndSky.cpp, where a grass texture is tiled over a
horizontal rectangle and a sky texture clamped to a vertical rectangle. There is the
added functionality of being able to transport the camera over the field by pressing
the up and down arrow keys. Figure 12.23 shows a screenshot.

As the camera travels, the grass seems to shimmer – flash and scintillate are terms
also used to describe this phenomenon. This is our first encounter with the aliasing
problem in texturing. Any visual artifact which arises owing to the finite resolution
of the display device, or, equivalently, the “large” size of individual pixels – at least
to the extent that they are discernible to the human eye – is said to be caused by
aliasing. End

Click for fieldAndSky.cpp Program Windows Project

Experiment 12.11. Change to linear filtering in fieldAndSky.cpp by replacing
every GL NEAREST with GL LINEAR. The grass still shimmers though less severely. The
sky seems okay with either GL NEAREST or GL LINEAR. End

Click for fieldAndSkyFiltered.cpp Program Windows Project

Experiment 12.12. Run fieldAndSkyFiltered.cpp, identical to fieldAnd-

Sky.cpp except for additional filtering options. Press the up/down arrow keys to
move the camera and the left/right ones to cycle through filters for the grass texture.
Messages at the top identify the current filters. Screenshots of the weakest and
strongest filters applied are in Figure 12.28. End

Click for compareFilters.cpp Program Windows Project

Experiment 12.13. Run compareFilters.cpp, where one sees side-by-side identical
images of a shuttle launch bound to a square. Press the up and down arrow keys to
move the squares. Press the left arrow key to cycle through filters for the image on the
left and the right arrow key to do likewise for the one on the right. Messages at the
top say which filters are currently applied. Of course, if one of the four mipmap-based
min filters – GL NEAREST MIPMAP NEAREST through GL LINEAR MIPMAP LINEAR – is
applied, then the particular mipmap actually chosen by OpenGL depends on the
screen space currently occupied by the square. Figure 12.29 is a screenshot of the
initial configuration.

Compare, as the squares move, the quality of the textures delivered by the various
min filters. For example, apply the GL NEAREST min filter to the image on the left and
GL LINEAR MIPMAP LINEAR to that on the right and press the up key to move both
away – the contrast between the shimmer on the left and its absence on the right is
dramatic. End

Click for mipmapLevels.cpp Program Windows Project78

i
i

i
i

i
i

i
i

Experiment 12.14. Run mipmapLevels.cpp, where the mipmaps are supplied by
the program, rather than generated automatically with glGenerateMipmap(). The
mipmaps are very simple: just seven differently colored square images, created by the
routine createMipmaps(), starting with the blue 64× 64 mipmapRes64 down to the
black 1× 1 mipmapRes1. Subsequently, commands of the form

glTexImage2D(GL TEXTURE 2D, level, GL RGBA, width, height,
0, GL RGBA, GL UNSIGNED BYTE, image);

in the routine loadMipmaps() each binds a width × height mipmap image to the
current texture object, starting with the highest resolution image (which, of course,
would be the original texture image in the case of an imported texture) at level 0, and
with each successive image of lower resolution having one higher level all the way up
to 6.

Move the square using the up and down arrow keys. As it grows smaller a change
in color indicates a change in the currently applied mipmap. Figure 12.30 is screenshot
after the first change. As the min filter setting is GL NEAREST MIPMAP NEAREST, a
unique color, that of the closest mipmap, is applied to the square at any given time.
End

Click for texturedTorus.cpp Program Windows Project

Experiment 12.15. Run texturedTorus.cpp, which shows a high-calorie donut
made from mapping a sugary texture onto a torus. Figure 12.32 is a screenshot. Press
‘x’-‘Z’ to turn the torus. End

Click for texturedTorpedo.cpp Program Windows Project

Experiment 12.16. Run texturedTorpedo.cpp, which textures parts of the
torpedo of torpedo.cpp – from Experiment 10.20 – as you can see in the screenshot
in Figure 12.34. Press space to start the propeller turning. End

Click for texturedSphere.cpp Program Windows Project

Experiment 12.17. Run texturedSphere.cpp, which applies earth.bmp as texture
to a sphere, the texture map being Mercator projection. Press ‘x’-‘Z’ to turn the
sphere. Figure 12.38 is a screenshot. End

Click for fieldAndSkyTextureAnimated.cpp Program Windows Project

Experiment 12.18. Run fieldAndSkyTextureAnimated.cpp, which animates the
sky texture of fieldAndSky.cpp by applying translations to the current texture matrix.
Press space to toggle between animation on and off. Figure 12.39 is a screenshot.
End

Click for fieldAndSkyLit.cpp Program Windows Project

Experiment 12.19. Run fieldAndSkyLit.cpp, which lights the scene of field-
AndSky.cpp with help of the GL MODULATE option. The light source is directional –
imagine the sun – its direction being controlled with the left and right arrow keys,
while its brightness can be changed using the up and down arrow keys. A white line 79

i
i

i
i

i
i

i
i

Chapter 12

Texture

indicates the direction and brightness of the sun. Figure 12.40(a) is an early morning
screenshot.

The material colors are all white and the light is a uniform gray, which means
essentially that the texture is modulated by the intensity of the light source, which
can be controlled by changing its diffuse and specular (d, d, d, 1) value or its direction
at angle of θ to the ground. The normal to the horizontal grassy plane is vertically
upward. Strangely, we use the same normal for the sky’s vertical plane, because
using its “true” value toward the positive z-direction has the unpleasant, but not
unexpected, consequence of a sky that doesn’t darken together with land. End

Click for litTexturedCylinder.cpp Program Windows Project

Experiment 12.20. Run litTexturedCylinder.cpp, which adds a label texture
and a can top texture to litCylinder.cpp from the previous chapter. Press ‘x’-‘Z’
to turn the can. Figure 12.40(b) is a screenshot.

Most of the program is routine – the texture coordinate generation is, in fact, a
near copy of that in texturedTorus.cpp – except for the following lighting model
command in setup() which we’re invoking in a program for the first time:

glLightModeli(GL LIGHT MODEL COLOR CONTROL, GL SEPARATE SPECULAR COLOR)

We had briefly encountered this statement as an OpenGL lighting model option
in Section 11.4. It causes a modification of OpenGL’s GL MODULATE procedure: the
specular color components are separated and not multiplied with the corresponding
texture color components, as are the ambient and diffuse, but added in after. The
result is that specular highlights are preserved rather than blended with the texture.

Turning the can you do see the specular highlights, but if you care to comment
out the statement above then they disappear. End

Click for multitexture.cpp Program Windows Project

Experiment 12.21. Run multitexture.cpp, which interpolates between night and
day sky texture. Press the left/right arrow keys to transition between night and day.
Figure 12.42 shows stages in the transition. End

Click for renderedTexture.cpp Program Windows Project

Experiment 12.22. Run renderedTexture.cpp. Press space to toggle the can
label animation on and off and ‘x’-‘Z’ to turn the can. Figure 12.47 is a screenshot.
End

80

i
i

i
i

i
i

i
i

CHAPTER 13
Special Visual Techniques

Click for blendRectangles1.cpp Program Windows Project

Experiment 13.1. Run blendRectangles1.cpp, which draws two translucent
rectangles with their alpha values equal to 0.5 set by calls of the form glColor4f(*,

*, *, 0.5), the red one being closer to the viewer than the blue one. The code order
in which the rectangles are drawn can be toggled by pressing space. Figure 13.2 shows
screenshots of either order. End

Click for blendRectangles2.cpp Program Windows Project

Experiment 13.2. Run blendRectangles2.cpp, which draws three rectangles at
different distances from the eye with depth testing enabled. The closest rectangle at
z = 0.5 is vertical and a translucent red (α = 0.5), the next one at z = 0.3 is angled
and opaque green (α = 1), while the farthest at z = 0.1 is horizontal and a translucent
blue (α = 0.5). See Figure 13.3(a).

(a) (b) (c) (d)

Figure 13.1: Screenshots of blendRectangles2.cpp: (a) Initial (b) With depth testing disabled
(c) With depth testing re-enabled and rectangles re-ordered to blue, green, red in the code (d) New
ordering seen from the −z-direction.

The scene is clearly not authentic as no translucency is evident in either of the
two areas where the green and blue rectangles are behind the red. The fault is not
OpenGL’s as it is rendering as it’s supposed to with depth testing, as we see next.
End

Click for blendRectangles2.cpp Program Windows Project

Experiment 13.3. Rearrange the rectangles and insert two glDepthMask() calls in
the drawing routine of blendRectangles2.cpp as follows: 81

i
i

i
i

i
i

i
i

Chapter 13

Special Visual

Techniques

// Draw opaque objects, only one.

drawGreenRectangle();

glDepthMask(GL FALSE); // Make depth buffer read-only.

// Draw translucent objects.

drawBlueRectangle();

drawRedRectangle();

glDepthMask(GL TRUE); // Make depth buffer writable.

Try both gluLookAt(. . ., 0.0, 0.0, -1.0, . . .) and gluLookAt(. . ., 0.0, 0.0,

1.0, . . .) to see the rectangles from the front and back. Interchange the drawing order
of the two translucent rectangles as well. The scene is authentic in every instance.
End

Click for sphereInGlassBox.cpp Program Windows Project

Experiment 13.4. Run sphereInGlassBox.cpp, which makes the sides of the box
of sphereInBox2.cpp glass-like by rendering them translucently. Only the unaveraged
normals option of sphereInBox2.cpp is implemented. Press the up and down arrow
keys to open or close the box and ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn it.

The opaque sphere is drawn first and then the translucent box sides, after making
the depth buffer read-only. A screenshot is Figure 13.5(a).

End

Click for fieldAndSkyTexturesBlended.cpp Program Windows Project

Experiment 13.5. Run fieldAndSkyTexturesBlended.cpp, which is based on
fieldAndSkyLit.cpp of the preceding chapter. Press the arrow keys to move the sun
(actually, the direction of the light).

As the sun rises the night sky morphs into a day sky. Figure 13.5(b) shows late
evening. Yes, we saw this very same morph in multitexture.cpp as an application
of multitexturing, using the interpolation combiner, in Section 12.8. End

Click for ballAndTorusReflected.cpp Program Windows Project

Experiment 13.6. Run ballAndTorusReflected.cpp, which builds on ballAnd-

TorusLitOrthoShadowed.cpp. Press space to start the ball traveling around the torus
and the up and down arrow keys to change its speed.

The reflected ball and torus are obtained by drawing them scaled by a factor of −1
in the y-direction, which creates their reflections in the xz-plane, and then blending
the floor into the reflection. Figure 13.5(c) shows a screenshot. End

Click for ballAndTorusMotionBlurred.cpp Program Windows Project

Experiment 13.7. Run ballAndTorusMotionBlurred.cpp, which enhances the
ball of ballAndTorusLitOrthoShadowed.cpp with motion blur. Press space to start
the ball traveling around the torus and the up and down arrow keys to change its
speed. See Figure 13.6 for a screenshot.

Examine the drawing routine to see that the blur, in fact, is simulated by blending
four additional copies of the ball behind it with alpha values decreasing with distance
from the actual ball. End82

i
i

i
i

i
i

i
i

Click for ballAndTorusFogged.cpp Program Windows Project

Experiment 13.8. Run ballAndTorusFogged.cpp, which enhances ballAndTorus-
LitOrthoShadowed.cpp from Chapter 11 with a gray fog. Figure 13.7 is a screenshot.

Press the delete key to toggle fog on and off, press space to toggle animation on
and off, and the up/down arrows to change the ball’s speed. End

Click for billboard.cpp Program Windows Project

Experiment 13.9. Run billboard.cpp, where an image of two trees is textured
onto an upright rectangle in a display list, and then the list called four times to arrange
a staggered array of images from left to right. Press the space bar to turn billboarding
on and off. See Figure 13.9 for screenshots.

As can be seen, billboarding causes a fairly convincing arc of trees to appear in
the distance, while turning it off dispatches the illusion. End

Click for antiAliasing+Multisampling.cpp Program Windows Project

Experiment 13.10. Run antiAliasing+Multisampling.cpp. Ignore the multi-
sampling controls, as well as the blue-yellow rectangle, for now.

Focus on the red line segment and the green point, which are both either antialiased
or not, ‘a’ or ‘A’ toggling between the two modes. The width of the line is changed by
pressing ‘l/L’, while the size of the point with ‘p/P’. The scene can be turned by the
‘x’-‘Z’ keys and translated by pressing the arrow and page up/down keys.

Figures 13.12(a) and (b) show screenshots of antialiasing off and on, respectively.
The effect of antialiasing is especially marked when the line is just shy of horizontal
or vertical. End

Click for antiAliasing+Multisampling.cpp Program Windows Project

Experiment 13.11. Fire up again antiAliasing+Multisampling.cpp. Multi-
sampling is toggled on/off, independently of antialiasing, by pressing ‘m’ or ‘M’.
Figures 13.12(c) is a screenshot with multisampling on.

Multisampling antialiases polygons particularly effectively, and its effect in our
program is best observed on the boundary of the blue-yellow rectangle, as well as
the edge between its two colored triangular halves, particularly, when they are nearly
horizontal or vertical. When multisampling is enabled, lines and points are antialiased
regardless if GL POINT SMOOTH or GL LINE SMOOTH has been enabled, which you can
see as well.

The number of sample buffers, shown at the top of program’s window when
multisampling is enabled, should be at least one, or there is effectively no multisampling
and you may need to check the settings of your graphics card. End

Click for pointSprite.cpp Program Windows Project

Experiment 13.12. Fire up pointSprite.cpp. The space bar toggles animation
on and off. The particle system of six sprites of fluctuating size, imprinted with the
same star texture, spinning in a circle, is simple-minded, though, hopefully, suggestive
of possibilities. Figure 13.14 is a screenshot. End

Click for sphereMapping.cpp Program Windows Project 83

i
i

i
i

i
i

i
i

Chapter 13

Special Visual

Techniques

Experiment 13.13. Run sphereMapping.cpp, which shows the scene of a shuttle
launch with a reflective rocket cone initially stationary in the sky above the rocket.
Press the up and down arrow keys to move the cone. As the cone flies down, the
reflection on its surface of the launch image changes. Figure 13.16 is a screenshot
as it’s about to crash to the ground. The environment texture applied obviously is
launch.bmp. End

Click for skybox.cpp Program Windows Project

Experiment 13.14. Run skybox.cpp, which creates a skybox using precisely the
cube map of Figure 13.18. A wire ball, the only “real” object in the scene, has been
placed inside the box.

The viewer is initially halfway between the middle of the box and the back, looking
toward the latter. The up/down arrow keys translate the viewpoint, while the left/right
and page up/down keys rotate it. Figure 13.19 is a screenshot.

Note that translations are constrained to keep the viewer far enough always from
the background to preserve the illusion that it’s real. End

Click for ballAndTorusStenciled.cpp Program Windows Project

Experiment 13.15. Run ballAndTorusStenciled.cpp, based on ballAndTorus-

Reflected.cpp. The difference is that in the earlier program the entire checkered
floor was reflective, while in the current one the red floor is non-reflective except for
a mirror-like disc lying on it. Pressing the arrow keys moves the disc and pressing
the space key starts and stops the ball moving. As can be seen in the screenshot of
Figure 13.28, the ball and torus are reflected only in the disc and nowhere else. End

Click for imageManipulationFBO.cpp Program Windows Project

Experiment 13.16. Run imageManipulationFBO.cpp. An image of the numeral 1
appears at the bottom left of the OpenGL window. Clicking the mouse left button
anywhere on the window will move the image to that location, while you can, as
well, drag it with the left button pressed. Figure 13.29 is a screenshot of the initial
configuration. End

Click for bumpMapping.cpp Program Windows Project

Experiment 13.17. Run bumpMapping.cpp, where a plane is bump mapped to
make it appear corrugated. Press space to toggle between bump mapping turned on
and off. Figure 13.33 shows screenshots. End

Click for ballAndTorusShadowMapped.cpp Program Windows Project

Experiment 13.18. Before running ballAndTorusShadowMapped.cpp you may
want to run again ballAndTorusLitOrthoShadowed.cpp from Chapter 11, seen as
well in Experiment 4.38 in Chapter 4, which implements a simple-minded blacken-and-
flatten strategy to draw orthographic shadows on the floor cast by a distant overhead
light source.

The scenes of the two shadowing programs are nearly identical, except that
ballAndTorusShadowMapped.cpp shadow maps a local light source, whose position is
indicated by a red sphere. Controls are identical too: press space to start the ball84

i
i

i
i

i
i

i
i

traveling around the torus and the up and down arrow keys to change its speed. As
can even be seen in the screenshot of Figure 13.36, shadowing is far more authentic in
ballAndTorusShadowMapped.cpp. End

85

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Part VII

Pixels, Pixels, Everywhere

87

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 14
Raster Algorithms

Click for DDA.cpp Program Windows Project

Experiment 14.1. Run DDA.cpp, which is pretty much a word-for-word implementa-
tion of the DDA algorithm above. A point of note is the simulation of the raster by the
OpenGL window: the statement gluOrtho2D(0.0, 500.0, 0.0, 500.0) identifies
“pixel-to-pixel” the viewing face with the 500× 500 OpenGL window (a “pixel” of the
viewing face being a 1× 1 square with corners at integer coordinates).

There’s no interaction and the endpoints of the line are fixed in the code at
(100, 100) and (300, 200). Figure 14.11 is a screenshot. End

89

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Part VIII

Programming Pipe Dreams

91

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 15
OpenGL 4.3, Shaders and the
Programmable Pipeline: Liftoff

Click for squareShaderized.cpp Program Windows Project

Experiment 15.1. Fire up the application program squareShaderized.cpp, which
comes with its two sidekick shaders, the imaginatively named vertexShader.glsl and
fragmentShader.glsl, located in the subfolder Shaders. Not only is the functionality
of squareShaderized.cpp – drawing a black square over white background, see
Figure 15.3 – exactly that of square.cpp, but, as we’ll see, so are its internals modulo
shaders. End

Click for ballAndTorusShaderized.cpp Program Windows Project

Experiment 15.2. Run ballAndTorusShaderized.cpp. The program’s two
shaders are vertexShader.glsl and fragmentShader.glsl. If you care to run
ballAndTorus.cpp again you see that the functionality of ballAndTorusShaderized.-
cpp is exactly the same: space toggles animation on and off, the up and down arrow
keys change its speed, and ‘x’-‘Z’ turn the scene. Figure 15.6 is a screenshot. End

Click for OBJmodelsShaderized.cpp Program Windows Project

Experiment 15.3. Run OBJmodelsShaderized.cpp which imports the same hippo
and camel meshes as OBJmodels.cpp and outputs them in identical poses as one sees
in Figure 15.7. End

Click for bumpMappingShaderized.cpp Program Windows Project

Experiment 15.4. Run bumpMappingShaderized.cpp. Interaction is the same
as bumpMapping.cpp: press space to toggle between bump mapping on and off.
Figure 15.8(b) is a screenshot with bump mapping enabled, evidently identical to that
of bumpMapping.cpp in Figure 15.8(a). End

Click for litCylinderShaderized.cpp Program Windows Project 93

i
i

i
i

i
i

i
i

Chapter 15

OpenGL 4.3, Shaders

and the

Programmable

Pipeline: Liftoff

Experiment 15.5. Run litCylinderShaderized.cpp. Interaction is the same
as litCylinder.cpp: press the ‘x’-‘Z’ keys to turn the cylinder. Figure 15.9 is a
screenshot. End

Click for bumpMappingPerPixelLight.cpp Program Windows Project

Experiment 15.6. Run bumpMappingPerPixelLight.cpp. Again, press space to
toggle between bump mapping on and off. Figure 15.8(c) is a screenshot. The
program, its associated C++ source and header files are all exactly the same as for
bumpMappingShaderized.cpp – the difference is only in the shaders! End

Click for fieldAndSkyFilteredShaderized.cpp Program Windows Project

Experiment 15.7. Run fieldAndSkyFilteredShaderized.cpp. As in fieldAnd-

SkyFiltered.cpp press the up and down arrow keys to move the viewpoint. However,
unlike the earlier program, fieldAndSkyFilteredShaderized.cpp implements (to
keep it simple) only one fixed filter for the grass texture and no options. Figure 15.10
is a screenshot. End

Click for texturedTorusShaderized.cpp Program Windows Project

Experiment 15.8. Run texturedTorusShaderized.cpp. As in texturedTorus.-

cpp press ‘x’-‘Z’ to turn the torus. See Figure 15.11 for a screenshot.
The point to note in textureTorusShaderized.cpp is how the associated

source torus.cpp defines texture coordinates for the torus following exactly
texturedTorus.cpp. Beyond that the application program and shaders are easily
understood. End

Click for litTexturedCylinderShaderized.cpp Program Windows Project

Experiment 15.9. Run litTexturedCylinderShaderized.cpp. The same beer
can is drawn twice, per-vertex lit on the left and per-pixel lit on the right. Press ‘x’-‘Z’
to turn the two cans simultaneously to compare per-vertex and per-pixel lighting on
the same disposition of the can. Figure 15.12 is a screenshot. We discuss the program
below. End

Click for proceduralTexture.cpp Program Windows Project

Experiment 15.10. Run proceduralTexture.cpp. Press ‘x’-‘Z’ to turn the beer
can and space to toggle between a procedurally textured whole can and one with a
grid of rectangular holes. Screenshots are in Figure 15.14. We’ll discuss the program’s
working next. End

Click for specularMapping.cpp Program Windows Project

Experiment 15.11. Run specularMapping.cpp. Press ‘x’-‘Z’ to turn the beer can
and space to toggle between specular mapping off and on. The program is obviously
based on litTexturedCylinderShaderized.cpp, in particular, keeping only per-pixel
lighting from the earlier program.

Screenshots are in Figure 15.17, specular mapping being off on the left and on to
the right. Evidently, specular mapping indeed restricts the highlight to the black part
of the label. We see how next. End94

i
i

i
i

i
i

i
i

Click for normalMapping.cpp Program Windows Project

Experiment 15.12. Run normalMapping.cpp. Press space to toggle between
applying a normal map to a plane and displaying the normal map as an image.
Figure 15.18 shows both. End

95

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 16
OpenGL 4.3, Shaders and the
Programmable Pipeline: Escape
Velocity

Click for helixListShaderizedInstancedVertAttrib.cpp Program Windows

Project

Experiment 16.1. Run helixListShaderizedInstancedVertAttrib.cpp. The
output of six different helixes is exactly the same as that of helixList.cpp. See
Figure 16.1. End

Click for helixListShaderizedShaderCounter.cpp Program Windows Project

Experiment 16.2. Run helixListShaderizedShaderCounter.cpp. The output,
just like that of helixListShaderizedInstancedVertAttrib.cpp, is the same as
that of helixList.cpp. See Figure 16.2. End

Click for litTexturedCylinderClipped.cpp Program Windows Project

Experiment 16.3. Run litTexturedCylinderClipped.cpp. Pressing ‘x’-‘Z’ turns
the can while space toggles between enabling and disabling a clipping plane which
slices off the can top. Figure 16.3 is a screenshot with the top gone. End

Click for specularMapping.cpp Program Windows Project

Experiment 16.4. Run specularMapping.cpp. Pressing space toggles between
specular mapping off and on, the label at the top left indicating the current status.
Figure 16.4 is a screenshot with specular mapping on.

We’ll leave the reader to check that we have created (using a drawing program) two
textures, one saying “Specular mapping on!” and the other “Specular mapping off!”,
and paste one or the other onto a long thin rectangle in the scene. A tedious process
this certainly but, then, OpenGL was never really meant to provide a text-drawing
service. End

Click for ballAndTorusShaderSubroutines.cpp Program Windows Project 97

i
i

i
i

i
i

i
i

Chapter 16

OpenGL 4.3, Shaders

and the

Programmable

Pipeline: Escape

Velocity

Experiment 16.5. Run ballAndTorusShaderSubroutines.cpp. The controls are
exactly as for ballAndTorusShaderized.cpp: space to toggle animation on and off,
up/down arrows to change its speed, and ‘x’-‘Z’ to rotate the scene. Figure 16.5 is a
screenshot. End

Click for ballAndTorusTwoProgramObjects.cpp Program Windows Project

Experiment 16.6. Run ballAndTorusTwoProgramObjects.cpp. The controls are
same as for ballAndTorusShaderized.cpp: space to toggle animation on and off,
up/down arrows to change its speed, and ‘x’-‘Z’ to rotate the scene. Figure 16.6 is a
screenshot. End

Click for fieldAndSkyTexturesBlendedShaderized.cpp Program Windows

Project

Experiment 16.7. Run fieldAndSkyTexturesBlendedShaderized.cpp. As in
fieldAndSkyTexturesBlended.cpp press the arrow keys to change the direction of
the sun, the transition between day and night happening from a blending of day and
night textures. See Figure 16.7 for a screenshot. End

Click for launchCameraBlurred.cpp Program Windows Project

Experiment 16.8. Run launchCameraBlurred.cpp to see an image of a shuttle
launch. Press space to blur the image as though the camera jolted rightward and
space again to unblur it. Figure 16.8 has screenshots. End

Click for points.cpp Program Windows Project

Experiment 16.9. Run points.cpp. Drawn are three large points. Press the
right and left arrow keys to cycle between four different point renderings and the up
and down arrow keys to move the points parallel to the z-axis. Figure 16.9(a) is a
screenshot of what is seen at first, while Figures 16.9(b)-(d) show the other three
cases. End

Click for pickingShaderized.cpp Program Windows Project

Experiment 16.10. Run pickingShaderized.cpp. Left click a triangle to pick it.
Figure 16.11 is a screenshot with the angled triangle picked. End

Click for ballsAndTorusTransformFeedback.cpp Program Windows Project

Experiment 16.11. Run ballsAndTorusTransformFeedback.cpp. The controls
are exactly as for ballAndTorusShaderized.cpp: space to toggle animation on and
off, up/down arrows to change its speed, and ‘x’-‘Z’ to rotate the scene.

However, instead of one ball, now there are two, initially coincident, which travel
in opposite directions around the torus. When the balls intersect they are red, when
they are close (closer than a particular threshold distance) they turn orange, and
beyond that they are blue. Figure 16.13 is a screenshot when the balls are close. End

Click for tessellatedCurve.cpp Program Windows Project98

i
i

i
i

i
i

i
i

Experiment 16.12. Run tessellatedCurve.cpp. You see the three input vertices
and an initially five-segment Bézier curve polyline. Press the up/down arrow keys
to increase/decrease the number of segments. Figure 16.17 is a screenshot with the
initial five segments.

The Bézier curve is evidently a poor approximation to the circular arc (not drawn)
through the three input vertices because of the rather naive setting of control points
in (16.2), but this is irrelevant to our understanding of the code which is discussed
through the next few sections.

Incidentally, it’s interesting in itself to see how the program goes about drawing the
three input vertices and the Bézier curve together. Its initialization routine actually
attaches only the vertex and fragment shaders. The drawing routine, then, first
attaches the TCS and TES to draw the Bézier polyline, and, next, detaches both
to draw the points – of course, one does not want any tessellation happening when
drawing just points. End

Click for tessellatedSphere.cpp Program Windows Project

Experiment 16.13. Run tessellatedSphere.cpp. Press space to toggle between
filled and wireframe and the up and down arrow keys to move the sphere. The
tessellation primitive is quads and the tessellation levels – all six including the two
inner and four outer – are always equal, starting at 50 and decreasing down a staircase
function to a minimum of 10 as the sphere moves away. However, pressing ‘m’ makes
all the tessellation levels equal to 50, regardless of how far the sphere has moved;
pressing ‘m’ again restores distance-based tessellation.

Figure 16.24 shows screenshots, all wireframe. Figure 16.24(a) is a wireframe of
the sphere close to the eye; Figures 16.24(b) and (c) are of the sphere moved the
same distance away, Figure 16.24(b) being tessellated according to the distance, while
Figure 16.24(c) is maximally tessellated, all levels equal to 50.

Figure 16.24(c) is clearly over-tessellated, looking filled rather than wireframe. In
fact, the reader can view the filled version of the middle sphere by pressing space to
see that it is perfectly smooth, proving that its sparser tessellation is adequate. Excess
tessellation is inefficient because it sends redundant triangles down the pipeline and,
moreover, tends to introduce aliasing artifacts when the object is moved.

Yes, the vertex shader has nothing in it. We ask you to look at this in the next
exercise. End

Click for torusSilhouette.cpp Program Windows Project

Experiment 16.14. Run torusSilhouette.cpp. Press the space bar to toggle
between the silhouette and mesh of a torus. Press ‘x’-‘Z’ to turn the torus. Figure 16.30
is a screenshot of the torus in silhouette. Note the imperfections in the silhouette at
certain alignments arising owing to aliasing, as well as floating point round-off errors,
which can be fixed with added effort, but this is not our concern here. End

Click for particleSystem.cpp Program Windows Project

Experiment 16.15. Run particleSystem.cpp. Press space to step through the
animation of a decidedly bland particle system. Figure 16.32 is a screenshot a few
steps into the animation. We explain below how the program works. End

99

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Part IX

A Shader’s Web

101

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 17
WebGL

Experiment 17.1. Fire up both: squareWeberized.html in VS Code and square-

Shaderized.cpp in VS Community 2019. As we analyze the former we’ll note parallels
with the latter. Figure 17.1 is a screenshot of the weberized program. End

Experiment 17.2. Open the project BallAndTorusWeberized in VS Code and
BallAndTorusShaderized in VS Community 2019. Figure 17.2 is a screenshot of
the weberized program. Keep in mind that to run ballAndTorusWeberized.html

you must use Open with Live Server in VS Code as a local server environment is
needed. Opening pops up first an alert describing interaction exactly similar to
ballAndTorusShaderized.cpp: press space to toggle between animation on and off,
up/down arrow keys to speed up or slow down the animation, and x-Z keys to rotate
the scene. End

Experiment 17.3. Open the project OBJModelsWeberized in VS Code and
OBJModelsShaderized in VS Community 2019. Figure 17.4 shows a screenshot
of the weberized program. Make sure to open OBJmodelsWeberized.html using Open
with Live Server in VS Code as a local server is needed. End

Experiment 17.4. Open the project LitCylinderWeberized in VS Code and
LitCylinderShaderized in VS Community 2019. Figure 17.5 shows a screenshot of
the weberized program. Interaction of the weberized program is the same as in the
shaderized one: press the x-Z keys to rotate the cylinder. End

Experiment 17.5. Open the project TexturedTorusWeberized in VS Code and
TextureTorusShaderized in VS Community 2019. Figure 17.6 shows a screenshot of
the weberized program. Interaction of the weberized program is the same as for the
shaderized one: press the x-Z keys to rotate the torus. End

Experiment 17.6. Open the project PickingWeberized in VS Code and Picking-

Shaderized in VS Community 2019. Interaction of the weberized program is the same
as for the shaderized one: click the left mouse button to select a triangle. Figure 17.8
shows a screenshot of the weberized program. End

103

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Part X

Anatomy of Curves and
Surfaces

105

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 18
Bézier

Click for deCasteljau3.cpp Program Windows Project

Experiment 18.1. Run deCasteljau3.cpp, which shows an animation of de
Casteljau’s method for three control points. Press the left or right arrow keys to
decrease or increase the curve parameter u. The interpolating points a(u), b(u) and
c(u) are colored red, green and blue, respectively. Figure 18.4 is a screenshot. End

Click for bezierCurves.cpp Program Windows Project

Experiment 18.2. Run bezierCurves.cpp of Chapter 10, which allows the user
to choose a Bézier curve of order 2-6 and move each control point.

You can choose an order in the first screen by pressing the up and down arrow keys.
Select 3. Press enter to go to the next screen to find the control points initially on a
straight line. Press space to select a control point – the selected one is red – and then
arrow keys to move it. Delete resets to the first screen. Figure 18.5 is a screenshot.

The polygonal line joining the control points, called the control polygon of the
curve, is drawn in light gray. Evidently, the Bézier curve “mimics” its control polygon,
but smoothly, avoiding a corner. End

Click for bezierCurveTangent.cpp Program Windows Project

Experiment 18.3. Run bezierCurveTangent.cpp of Chapter 10 which shows two
cubic Bézier curves. The second curve may be shaped by selecting a control point with
the space bar and moving it with the arrow keys. Visually verify Proposition 18.1(g) –
the configuration of the screenshot of Figure 18.10, in fact, does this. End

Click for sweepBezierSurface.cpp Program Windows Project

Experiment 18.4. Run sweepBezierSurface.cpp to see an animation of the
procedure. Press the left/right (or up/down) arrow keys to move the sweeping curve
and the space bar to toggle between the two possible sweep directions. Figure 18.13 is
a screenshot.

The 4 × 4 array of the Bézier surface’s control points (drawn as small squares)
consists of a blue, red, green and yellow row of four control points each. The four
fixed Bézier curves of order 4 are drawn blue, red, green and yellow, respectively (the
curves are in 3-space, which is a bit hard to make out because of the projection). The
sweeping Bézier curve is black and its (moving) control points are drawn as larger 107

i
i

i
i

i
i

i
i

Chapter 18

Bézier

squares. The currently swept part of the Bézier surface is the dark mesh. The current
parameter value is shown at the top left. End

Click for bezierSurface.cpp Program Windows Project

Experiment 18.5. Run bezierSurface.cpp from Chapter 10, which allows the
user to shape a Bézier surface by selecting and moving control points. Press the space
and tab keys to select a control point. Use the left/right arrow keys to move the
control point parallel to the x-axis, the up/down arrow keys to move it parallel to the
y-axis, and the page up/down keys to move it parallel to the z-axis.

Press ‘x/X’, ‘y/Y’ and ‘z/Z’ to turn the viewpoint. Figure 18.14 is a screenshot.
End

108

i
i

i
i

i
i

i
i

Part XI

Well Projected

109

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 19
Applications of Projective Spaces:
OpenGL’s Projection Transformations

Click for manipulateProjectionMatrix.cpp Program Windows Project

Experiment 19.1. Run manipulateProjectionMatrix.cpp, a simple modification
of manipulateModelviewMatrix.cpp of Chapter 5. Figure 19.15 is a screenshot,
though the output to the OpenGL window is of little interest. Of interest, though, are
the new statements in the resize() routine that output the current projection matrix
just before and after the call glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0).

Compare the second matrix output to the command window by the program with
P (glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0)) as computed with the help of
Equation (19.8). End

111

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

Part XII

Time for a Pipe

113

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

CHAPTER 20
Pipeline Operation

Click for box.cpp modified Program Windows Project

Experiment 20.1. Replace the box glutWireCube(5.0) of box.cpp of Chapter 4
with the line segment

glBegin(GL_LINES);

glVertex3f(1.0, 0.0, -10.0);

glVertex3f(1.0, 0.0, 0.0);

glEnd();

and delete the glTranslatef(0.0, 0.0, -15.0) statement.
You see a short segment, the clipped part of the defined line segment, whose

first endpoint [1 0 − 10]T is inside the viewing frustum defined by the program’s
projection statement glFrustum(-5.0, 5.0, -5.0, 5.0, 5.0, 100.0), while the
second [1 0 0]T is outside (as is easily checked). Figure 20.3 is a screenshot. End

Click for perspectiveCorrection.cpp Program Windows Project

Experiment 20.2. Run perspectiveCorrection.cpp. You see a thick straight
line segment which starts at a red vertex at its left and ends at a green one at its right.
Also seen is a big point just above the line, which can be slid along it by pressing
the left/right arrow keys. The point’s color can be changed, as well, between red and
green by pressing the up/down arrow keys. Figure 20.5 is a screenshot.

The color-tuple of the segment’s left vertex, as you can verify in the code, is
(1.0, 0.0, 0.0), a pure red, while that of the right is (0.0, 1.0, 0.0), a pure green. As
expected by interpolation, therefore, there is a color transition from red at the left
end of the segment to green at its right.

The number at the topmost right of the display indicates the fraction of the way
the big movable point is from the left vertex of the segment to the right. The number
below it indicates the fraction of the “way” its color is from red to green – precisely, if
the value is u, then the color of the point is (1− u, u, 0).

Initially, the point is at the left and a pure red; in other words, it is 0 distance
from the left end, and its color 0 distance from red. Change both values to 0.5 – the
color of the point does not match that of the segment below it any more. It seems,
therefore, that the midpoint of the line is not colored (0.5, 0.5, 0.0), which is the color
of the point. Shouldn’t it be so, though, by linear interpolation, as it is half-way
between two end vertices colored (1.0, 0.0, 0.0) and (0.0, 1.0, 0.0), respectively? End

The program sphereInBoxPOV.pov is in the folder
ExperimenterSource/Chapter20/SphereInBoxPOV. 115

i
i

i
i

i
i

i
i

Chapter 20

Pipeline Operation

Click for sphereInBox1.cpp Program Windows Project

Experiment 20.3. If you have successfully installed POV-Ray, then open sphere-

InBoxPOV.pov using that application and press the Run button at the top; if not, use
any editor to at least view the code. Figure 20.17(a) is the output. Impressive, is it not,
especially if you compare with the output in Figure 20.17(b) of sphereInBox1.cpp
of Chapter 11, which, of course, is almost the exact scene captured with OpenGL’s
synthetic camera? The inside of the box, with the interplay of light evident in shadows
and reflections, is far more realistic in the ray-traced picture (the front of the ray-traced
box could do with an additional light source, though, but we wanted to keep the
OpenGL and POV-Ray versions as similar as possible). End

The program sphereInBoxPOV.pov is in the folder
ExperimenterSource/Chapter20/ExperimentRadiosity.

Experiment 20.4. Run again sphereInBoxPOV.pov. Then run again after
uncommenting the line

global_settings{radiosity{}}

at the top to enable radiosity computation with default settings. The difference is
significant, is it not? Figure 20.25(a) is the ray-traced output without radiosity, while
Figure 20.25(b) is the output with radiosity. There clearly is much more light going
around inside the box in the latter rendering. End

116

	I Hello World
	1 An Invitation to Computer Graphics
	2 On to OpenGL and 3D Computer Graphics

	II Tricks of the Trade
	3 An OpenGL Toolbox

	III Movers and Shapers
	4 Transformation, Animation and Viewing
	5 Inside Animation: The Theory of Transformations
	6 Advanced Animation Techniques

	IV Geometry for the Home Office
	7 Convexity and Interpolation
	8 Triangulation
	9 Orientation

	V Making Things Up
	10 Modeling in 3D Space

	VI Lights, Camera, Equation
	11 Color and Light
	12 Texture
	13 Special Visual Techniques

	VII Pixels, Pixels, Everywhere
	14 Raster Algorithms

	VIII Programming Pipe Dreams
	15 OpenGL 4.3, Shaders and the Programmable Pipeline: Liftoff
	16 OpenGL 4.3, Shaders and the Programmable Pipeline: Escape Velocity

	IX A Shader's Web
	17 WebGL

	X Anatomy of Curves and Surfaces
	18 Bézier

	XI Well Projected
	19 Applications of Projective Spaces: OpenGL's Projection Transformations

	XII Time for a Pipe
	20 Pipeline Operation

